Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 6 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 7 |
+
|
| 8 |
+
model_id = "distil-whisper/distil-small.en"
|
| 9 |
+
|
| 10 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 11 |
+
model_id, torch_dtype=torch_dtype, use_safetensors=True
|
| 12 |
+
)
|
| 13 |
+
model.to(device)
|
| 14 |
+
|
| 15 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 16 |
+
|
| 17 |
+
pipe = pipeline(
|
| 18 |
+
"automatic-speech-recognition",
|
| 19 |
+
model=model,
|
| 20 |
+
tokenizer=processor.tokenizer,
|
| 21 |
+
feature_extractor=processor.feature_extractor,
|
| 22 |
+
max_new_tokens=128,
|
| 23 |
+
torch_dtype=torch_dtype,
|
| 24 |
+
device=device,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def audio2text(audio_file):
|
| 28 |
+
output=pipe(audio_file)
|
| 29 |
+
return output['text']
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
gr.Interface(fn=audio2text, inputs=[gr.Audio, label='upload your audio file', source='upload', type='filepath'], outputs=[gr.Textbox, label="transcription"]).launch()
|