Spaces:
Running
on
Zero
Running
on
Zero
Liam Dyer
commited on
letting it rip bud
Browse files- app.py +102 -23
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -7,6 +7,34 @@ import string
|
|
| 7 |
import random
|
| 8 |
from pypdf import PdfReader
|
| 9 |
import ocrmypdf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def random_word(length):
|
|
@@ -14,9 +42,8 @@ def random_word(length):
|
|
| 14 |
return "".join(random.choice(letters) for _ in range(length))
|
| 15 |
|
| 16 |
|
| 17 |
-
def convert_pdf(input_file):
|
| 18 |
reader = PdfReader(input_file)
|
| 19 |
-
metadata = extract_metadata_from_pdf(reader)
|
| 20 |
text = extract_text_from_pdf(reader)
|
| 21 |
|
| 22 |
# Check if there are any images
|
|
@@ -35,7 +62,7 @@ def convert_pdf(input_file):
|
|
| 35 |
# Delete the OCR file
|
| 36 |
os.remove(out_pdf_file)
|
| 37 |
|
| 38 |
-
return text
|
| 39 |
|
| 40 |
|
| 41 |
def extract_text_from_pdf(reader):
|
|
@@ -48,17 +75,7 @@ def extract_text_from_pdf(reader):
|
|
| 48 |
return full_text.strip()
|
| 49 |
|
| 50 |
|
| 51 |
-
def
|
| 52 |
-
return {
|
| 53 |
-
"author": reader.metadata.author,
|
| 54 |
-
"creator": reader.metadata.creator,
|
| 55 |
-
"producer": reader.metadata.producer,
|
| 56 |
-
"subject": reader.metadata.subject,
|
| 57 |
-
"title": reader.metadata.title,
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def convert_pandoc(input_file, filename):
|
| 62 |
# Temporarily copy the file
|
| 63 |
shutil.copyfile(input_file, filename)
|
| 64 |
|
|
@@ -78,7 +95,7 @@ def convert_pandoc(input_file, filename):
|
|
| 78 |
|
| 79 |
|
| 80 |
@spaces.GPU
|
| 81 |
-
def convert(input_file
|
| 82 |
plain_text_filetypes = [
|
| 83 |
".txt",
|
| 84 |
".csv",
|
|
@@ -91,23 +108,85 @@ def convert(input_file, filename):
|
|
| 91 |
".jsonc",
|
| 92 |
]
|
| 93 |
# Already a plain text file that wouldn't benefit from pandoc so return the content
|
| 94 |
-
if any(
|
| 95 |
with open(input_file, "r") as f:
|
| 96 |
-
return f.read()
|
| 97 |
|
| 98 |
-
if
|
| 99 |
return convert_pdf(input_file)
|
| 100 |
|
| 101 |
-
return convert_pandoc(input_file,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
# We accept a filename because the gradio JS interface removes this information
|
| 105 |
# and it's critical for choosing the correct processing pipeline
|
| 106 |
gr.Interface(
|
| 107 |
convert,
|
| 108 |
-
inputs=[
|
| 109 |
-
|
| 110 |
-
gr.
|
| 111 |
-
gr.
|
| 112 |
],
|
|
|
|
| 113 |
).launch()
|
|
|
|
| 7 |
import random
|
| 8 |
from pypdf import PdfReader
|
| 9 |
import ocrmypdf
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
|
| 12 |
+
model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m")
|
| 13 |
+
model.to(device="cuda")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def chunk(text, max_length=512):
|
| 17 |
+
chunks = []
|
| 18 |
+
while len(text) > max_length:
|
| 19 |
+
chunks.append(text[:max_length])
|
| 20 |
+
text = text[max_length:]
|
| 21 |
+
chunks.append(text)
|
| 22 |
+
return chunks
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@spaces.GPU
|
| 26 |
+
def embed(queries, chunks) -> dict[str, list[tuple[str, float]]]:
|
| 27 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
| 28 |
+
document_embeddings = model.encode(chunks)
|
| 29 |
+
|
| 30 |
+
scores = query_embeddings @ document_embeddings.T
|
| 31 |
+
results = {}
|
| 32 |
+
for query, query_scores in zip(queries, scores):
|
| 33 |
+
chunk_idxs = [i for i in range(len(chunks))]
|
| 34 |
+
# Get a structure like {query: [(chunk_idx, score), (chunk_idx, score), ...]}
|
| 35 |
+
results[query] = list(zip(chunk_idxs, query_scores))
|
| 36 |
+
|
| 37 |
+
return results
|
| 38 |
|
| 39 |
|
| 40 |
def random_word(length):
|
|
|
|
| 42 |
return "".join(random.choice(letters) for _ in range(length))
|
| 43 |
|
| 44 |
|
| 45 |
+
def convert_pdf(input_file) -> str:
|
| 46 |
reader = PdfReader(input_file)
|
|
|
|
| 47 |
text = extract_text_from_pdf(reader)
|
| 48 |
|
| 49 |
# Check if there are any images
|
|
|
|
| 62 |
# Delete the OCR file
|
| 63 |
os.remove(out_pdf_file)
|
| 64 |
|
| 65 |
+
return text
|
| 66 |
|
| 67 |
|
| 68 |
def extract_text_from_pdf(reader):
|
|
|
|
| 75 |
return full_text.strip()
|
| 76 |
|
| 77 |
|
| 78 |
+
def convert_pandoc(input_file, filename) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# Temporarily copy the file
|
| 80 |
shutil.copyfile(input_file, filename)
|
| 81 |
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
@spaces.GPU
|
| 98 |
+
def convert(input_file) -> str:
|
| 99 |
plain_text_filetypes = [
|
| 100 |
".txt",
|
| 101 |
".csv",
|
|
|
|
| 108 |
".jsonc",
|
| 109 |
]
|
| 110 |
# Already a plain text file that wouldn't benefit from pandoc so return the content
|
| 111 |
+
if any(input_file.endswith(ft) for ft in plain_text_filetypes):
|
| 112 |
with open(input_file, "r") as f:
|
| 113 |
+
return f.read()
|
| 114 |
|
| 115 |
+
if input_file.endswith(".pdf"):
|
| 116 |
return convert_pdf(input_file)
|
| 117 |
|
| 118 |
+
return convert_pandoc(input_file, input_file)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@spaces.GPU
|
| 122 |
+
def predict(queries, documents, max_characters) -> list[list[str]]:
|
| 123 |
+
queries = queries.split("\n")
|
| 124 |
+
|
| 125 |
+
# Conver the documents to text
|
| 126 |
+
converted_docs = [convert(doc) for doc in documents]
|
| 127 |
+
|
| 128 |
+
# Return if the total length is less than the max characters
|
| 129 |
+
total_doc_lengths = sum([len(doc) for doc, _ in converted_docs])
|
| 130 |
+
if total_doc_lengths < max_characters:
|
| 131 |
+
return [[doc] for doc, _ in converted_docs]
|
| 132 |
+
|
| 133 |
+
# Embed the documents in 512 character chunks
|
| 134 |
+
chunked_docs = [chunk(doc, 512) for doc in converted_docs]
|
| 135 |
+
embedded_docs = [embed(queries, chunks) for chunks in chunked_docs]
|
| 136 |
+
|
| 137 |
+
# Get a structure like {query: [(doc_idx, chunk_idx, score), (doc_idx, chunk_idx, score), ...]}
|
| 138 |
+
query_embeddings = {}
|
| 139 |
+
for doc_idx, embedded_doc in enumerate(embedded_docs):
|
| 140 |
+
for query, doc_scores in embedded_doc.items():
|
| 141 |
+
doc_scores_with_doc = [
|
| 142 |
+
(doc_idx, chunk_idx, score) for (chunk_idx, score) in doc_scores
|
| 143 |
+
]
|
| 144 |
+
if query not in query_embeddings:
|
| 145 |
+
query_embeddings[query] = []
|
| 146 |
+
query_embeddings[query] = query_embeddings[query] + doc_scores_with_doc
|
| 147 |
+
|
| 148 |
+
# Sort the embeddings by score
|
| 149 |
+
for query, doc_scores in query_embeddings.items():
|
| 150 |
+
query_embeddings[query] = sorted(doc_scores, key=lambda x: x[2], reverse=True)
|
| 151 |
+
|
| 152 |
+
# Choose the top embedding from each query until we reach the max characters
|
| 153 |
+
# Getting a structure like [[chunk, ...]]
|
| 154 |
+
document_embeddings = [[] for _ in range(len(documents))]
|
| 155 |
+
total_chars = 0
|
| 156 |
+
while total_chars < max_characters:
|
| 157 |
+
for query, doc_scores in query_embeddings.items():
|
| 158 |
+
if len(doc_scores) == 0:
|
| 159 |
+
continue
|
| 160 |
+
|
| 161 |
+
# Grab the top score for the query
|
| 162 |
+
doc_idx, chunk_idx, _ = doc_scores.pop(0)
|
| 163 |
+
if doc_idx not in document_embeddings:
|
| 164 |
+
document_embeddings[doc_idx] = []
|
| 165 |
+
|
| 166 |
+
# Ensure we have space
|
| 167 |
+
chunk = chunked_docs[doc_idx][chunk_idx]
|
| 168 |
+
if total_chars + len(chunk) > max_characters:
|
| 169 |
+
continue
|
| 170 |
+
|
| 171 |
+
# Ensure we haven't already added this chunk from this document
|
| 172 |
+
if chunk_idx in document_embeddings[doc_idx]:
|
| 173 |
+
continue
|
| 174 |
+
|
| 175 |
+
# Add the chunk
|
| 176 |
+
document_embeddings[doc_idx].append(chunk_idx)
|
| 177 |
+
total_chars += len(chunk)
|
| 178 |
+
|
| 179 |
+
return document_embeddings
|
| 180 |
|
| 181 |
|
| 182 |
# We accept a filename because the gradio JS interface removes this information
|
| 183 |
# and it's critical for choosing the correct processing pipeline
|
| 184 |
gr.Interface(
|
| 185 |
convert,
|
| 186 |
+
inputs=[
|
| 187 |
+
gr.Textbox(label="Queries separated by newline"),
|
| 188 |
+
gr.Files(label="Upload File"),
|
| 189 |
+
gr.Number(label="Max output characters", value=16384),
|
| 190 |
],
|
| 191 |
+
outputs=[gr.JSON(label="Embedded documents")],
|
| 192 |
).launch()
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
ocrmypdf==16.3.1
|
| 2 |
pypdf==4.2.0
|
|
|
|
|
|
| 1 |
ocrmypdf==16.3.1
|
| 2 |
pypdf==4.2.0
|
| 3 |
+
sentence-transformers==3.0.0
|