Spaces:
Running
Running
| import time | |
| import os | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModel, AutoTokenizer | |
| import meilisearch | |
| tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-base-en-v1.5') | |
| model = AutoModel.from_pretrained('BAAI/bge-base-en-v1.5') | |
| model.eval() | |
| cuda_available = torch.cuda.is_available() | |
| print(f"CUDA available: {cuda_available}") | |
| meilisearch_client = meilisearch.Client("https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"]) | |
| meilisearch_index_name = "docs-embed" | |
| meilisearch_index = meilisearch_client.index(meilisearch_index_name) | |
| output_options = ["RAG-friendly", "human-friendly"] | |
| def search_embeddings(query_text, output_option): | |
| start_time_embedding = time.time() | |
| query_prefix = 'Represent this sentence for searching code documentation: ' | |
| query_tokens = tokenizer(query_prefix + query_text, padding=True, truncation=True, return_tensors='pt', max_length=512) | |
| # step1: tokenizer the query | |
| with torch.no_grad(): | |
| # Compute token embeddings | |
| model_output = model(**query_tokens) | |
| sentence_embeddings = model_output[0][:, 0] | |
| # normalize embeddings | |
| sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) | |
| sentence_embeddings_list = sentence_embeddings[0].tolist() | |
| elapsed_time_embedding = time.time() - start_time_embedding | |
| # step2: search meilisearch | |
| start_time_meilisearch = time.time() | |
| response = meilisearch_index.search( | |
| "", opt_params={"vector": sentence_embeddings_list, "hybrid": {"semanticRatio": 1.0}, "limit": 5, "attributesToRetrieve": ["text", "source", "library"]} | |
| ) | |
| elapsed_time_meilisearch = time.time() - start_time_meilisearch | |
| hits = response["hits"] | |
| # step3: present the results in markdown | |
| if output_option == "human-friendly": | |
| md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n" | |
| for hit in hits: | |
| text, source, library = hit["text"], hit["source"], hit["library"] | |
| source = f"[source](https://huggingface.co/docs/{library}/{source})" | |
| md += text + f"\n\n{source}\n\n---\n\n" | |
| return md | |
| elif output_option == "RAG-friendly": | |
| hit_texts = [hit["text"] for hit in hits] | |
| hit_text_str = "\n------------\n".join(hit_texts) | |
| return hit_text_str | |
| demo = gr.Interface( | |
| fn=search_embeddings, | |
| inputs=[gr.Textbox(label="enter your query", placeholder="Type Markdown here...", lines=10), gr.Radio(label="Select an output option", choices=output_options, value="RAG-friendly")], | |
| outputs=gr.Markdown(), | |
| title="HF Docs Emebddings Explorer", | |
| allow_flagging="never" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |