Spaces:
Runtime error
Runtime error
sync
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ for taking it to the next level by enabling inpainting with the FLUX.
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
-
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
@@ -26,10 +26,15 @@ pipe = FluxInpaintPipeline.from_pretrained(
|
|
| 26 |
|
| 27 |
def resize_image_dimensions(
|
| 28 |
original_resolution_wh: Tuple[int, int],
|
| 29 |
-
maximum_dimension: int =
|
| 30 |
) -> Tuple[int, int]:
|
| 31 |
width, height = original_resolution_wh
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
if width > height:
|
| 34 |
scaling_factor = maximum_dimension / width
|
| 35 |
else:
|
|
@@ -41,13 +46,10 @@ def resize_image_dimensions(
|
|
| 41 |
new_width = new_width - (new_width % 32)
|
| 42 |
new_height = new_height - (new_height % 32)
|
| 43 |
|
| 44 |
-
new_width = min(maximum_dimension, new_width)
|
| 45 |
-
new_height = min(maximum_dimension, new_height)
|
| 46 |
-
|
| 47 |
return new_width, new_height
|
| 48 |
|
| 49 |
|
| 50 |
-
@spaces.GPU()
|
| 51 |
def process(
|
| 52 |
input_image_editor: dict,
|
| 53 |
input_text: str,
|
|
@@ -79,7 +81,7 @@ def process(
|
|
| 79 |
if randomize_seed_checkbox:
|
| 80 |
seed_slicer = random.randint(0, MAX_SEED)
|
| 81 |
generator = torch.Generator().manual_seed(seed_slicer)
|
| 82 |
-
|
| 83 |
prompt=input_text,
|
| 84 |
image=resized_image,
|
| 85 |
mask_image=resized_mask,
|
|
@@ -88,7 +90,9 @@ def process(
|
|
| 88 |
strength=strength_slider,
|
| 89 |
generator=generator,
|
| 90 |
num_inference_steps=num_inference_steps_slider
|
| 91 |
-
).images[0]
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
with gr.Blocks() as demo:
|
|
@@ -120,7 +124,7 @@ with gr.Blocks() as demo:
|
|
| 120 |
minimum=0,
|
| 121 |
maximum=MAX_SEED,
|
| 122 |
step=1,
|
| 123 |
-
value=
|
| 124 |
)
|
| 125 |
|
| 126 |
randomize_seed_checkbox_component = gr.Checkbox(
|
|
@@ -129,14 +133,19 @@ with gr.Blocks() as demo:
|
|
| 129 |
with gr.Row():
|
| 130 |
strength_slider_component = gr.Slider(
|
| 131 |
label="Strength",
|
|
|
|
|
|
|
|
|
|
| 132 |
minimum=0,
|
| 133 |
maximum=1,
|
| 134 |
step=0.01,
|
| 135 |
-
value=0.
|
| 136 |
)
|
| 137 |
|
| 138 |
num_inference_steps_slider_component = gr.Slider(
|
| 139 |
label="Number of inference steps",
|
|
|
|
|
|
|
| 140 |
minimum=1,
|
| 141 |
maximum=50,
|
| 142 |
step=1,
|
|
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
+
IMAGE_SIZE = 1024
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
|
|
| 26 |
|
| 27 |
def resize_image_dimensions(
|
| 28 |
original_resolution_wh: Tuple[int, int],
|
| 29 |
+
maximum_dimension: int = IMAGE_SIZE
|
| 30 |
) -> Tuple[int, int]:
|
| 31 |
width, height = original_resolution_wh
|
| 32 |
|
| 33 |
+
# if width <= maximum_dimension and height <= maximum_dimension:
|
| 34 |
+
# width = width - (width % 32)
|
| 35 |
+
# height = height - (height % 32)
|
| 36 |
+
# return width, height
|
| 37 |
+
|
| 38 |
if width > height:
|
| 39 |
scaling_factor = maximum_dimension / width
|
| 40 |
else:
|
|
|
|
| 46 |
new_width = new_width - (new_width % 32)
|
| 47 |
new_height = new_height - (new_height % 32)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
return new_width, new_height
|
| 50 |
|
| 51 |
|
| 52 |
+
@spaces.GPU(duration=100)
|
| 53 |
def process(
|
| 54 |
input_image_editor: dict,
|
| 55 |
input_text: str,
|
|
|
|
| 81 |
if randomize_seed_checkbox:
|
| 82 |
seed_slicer = random.randint(0, MAX_SEED)
|
| 83 |
generator = torch.Generator().manual_seed(seed_slicer)
|
| 84 |
+
result = pipe(
|
| 85 |
prompt=input_text,
|
| 86 |
image=resized_image,
|
| 87 |
mask_image=resized_mask,
|
|
|
|
| 90 |
strength=strength_slider,
|
| 91 |
generator=generator,
|
| 92 |
num_inference_steps=num_inference_steps_slider
|
| 93 |
+
).images[0]
|
| 94 |
+
print('INFERENCE DONE')
|
| 95 |
+
return result, resized_mask
|
| 96 |
|
| 97 |
|
| 98 |
with gr.Blocks() as demo:
|
|
|
|
| 124 |
minimum=0,
|
| 125 |
maximum=MAX_SEED,
|
| 126 |
step=1,
|
| 127 |
+
value=42,
|
| 128 |
)
|
| 129 |
|
| 130 |
randomize_seed_checkbox_component = gr.Checkbox(
|
|
|
|
| 133 |
with gr.Row():
|
| 134 |
strength_slider_component = gr.Slider(
|
| 135 |
label="Strength",
|
| 136 |
+
info="Indicates extent to transform the reference `image`. "
|
| 137 |
+
"Must be between 0 and 1. `image` is used as a starting "
|
| 138 |
+
"point and more noise is added the higher the `strength`.",
|
| 139 |
minimum=0,
|
| 140 |
maximum=1,
|
| 141 |
step=0.01,
|
| 142 |
+
value=0.85,
|
| 143 |
)
|
| 144 |
|
| 145 |
num_inference_steps_slider_component = gr.Slider(
|
| 146 |
label="Number of inference steps",
|
| 147 |
+
info="The number of denoising steps. More denoising steps "
|
| 148 |
+
"usually lead to a higher quality image at the",
|
| 149 |
minimum=1,
|
| 150 |
maximum=50,
|
| 151 |
step=1,
|