Spaces:
Runtime error
Runtime error
test new `masking_prompt_text` mode
Browse files
app.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
from typing import Tuple
|
| 2 |
|
|
|
|
| 3 |
import requests
|
| 4 |
import random
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
-
from PIL import Image
|
| 10 |
from diffusers import FluxInpaintPipeline
|
|
|
|
| 11 |
|
| 12 |
MARKDOWN = """
|
| 13 |
# FLUX.1 Inpainting 🔥
|
|
@@ -21,6 +23,9 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 21 |
IMAGE_SIZE = 1024
|
| 22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
| 26 |
image = image.convert("RGBA")
|
|
@@ -45,6 +50,7 @@ EXAMPLES = [
|
|
| 45 |
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
| 46 |
},
|
| 47 |
"little lion",
|
|
|
|
| 48 |
42,
|
| 49 |
False,
|
| 50 |
0.85,
|
|
@@ -57,6 +63,7 @@ EXAMPLES = [
|
|
| 57 |
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
| 58 |
},
|
| 59 |
"tattoos",
|
|
|
|
| 60 |
42,
|
| 61 |
False,
|
| 62 |
0.85,
|
|
@@ -74,11 +81,6 @@ def resize_image_dimensions(
|
|
| 74 |
) -> Tuple[int, int]:
|
| 75 |
width, height = original_resolution_wh
|
| 76 |
|
| 77 |
-
# if width <= maximum_dimension and height <= maximum_dimension:
|
| 78 |
-
# width = width - (width % 32)
|
| 79 |
-
# height = height - (height % 32)
|
| 80 |
-
# return width, height
|
| 81 |
-
|
| 82 |
if width > height:
|
| 83 |
scaling_factor = maximum_dimension / width
|
| 84 |
else:
|
|
@@ -93,31 +95,53 @@ def resize_image_dimensions(
|
|
| 93 |
return new_width, new_height
|
| 94 |
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
@spaces.GPU(duration=100)
|
| 97 |
def process(
|
| 98 |
input_image_editor: dict,
|
| 99 |
-
|
|
|
|
| 100 |
seed_slicer: int,
|
| 101 |
randomize_seed_checkbox: bool,
|
| 102 |
strength_slider: float,
|
| 103 |
num_inference_steps_slider: int,
|
| 104 |
progress=gr.Progress(track_tqdm=True)
|
| 105 |
):
|
| 106 |
-
if not
|
| 107 |
gr.Info("Please enter a text prompt.")
|
| 108 |
return None, None
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
if not image:
|
| 114 |
gr.Info("Please upload an image.")
|
| 115 |
return None, None
|
| 116 |
|
| 117 |
-
if not
|
| 118 |
-
gr.Info("Please draw a mask
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
return None, None
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
| 122 |
resized_image = image.resize((width, height), Image.LANCZOS)
|
| 123 |
resized_mask = mask.resize((width, height), Image.LANCZOS)
|
|
@@ -126,7 +150,7 @@ def process(
|
|
| 126 |
seed_slicer = random.randint(0, MAX_SEED)
|
| 127 |
generator = torch.Generator().manual_seed(seed_slicer)
|
| 128 |
result = pipe(
|
| 129 |
-
prompt=
|
| 130 |
image=resized_image,
|
| 131 |
mask_image=resized_mask,
|
| 132 |
width=width,
|
|
@@ -145,24 +169,31 @@ with gr.Blocks() as demo:
|
|
| 145 |
with gr.Column():
|
| 146 |
input_image_editor_component = gr.ImageEditor(
|
| 147 |
label='Image',
|
| 148 |
-
type='
|
| 149 |
sources=["upload", "webcam"],
|
| 150 |
image_mode='RGB',
|
| 151 |
layers=False,
|
| 152 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 153 |
|
| 154 |
with gr.Row():
|
| 155 |
-
|
| 156 |
label="Prompt",
|
| 157 |
show_label=False,
|
| 158 |
max_lines=1,
|
| 159 |
-
placeholder="Enter
|
| 160 |
container=False,
|
| 161 |
)
|
| 162 |
submit_button_component = gr.Button(
|
| 163 |
value='Submit', variant='primary', scale=0)
|
| 164 |
|
| 165 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
seed_slicer_component = gr.Slider(
|
| 167 |
label="Seed",
|
| 168 |
minimum=0,
|
|
@@ -207,7 +238,8 @@ with gr.Blocks() as demo:
|
|
| 207 |
examples=EXAMPLES,
|
| 208 |
inputs=[
|
| 209 |
input_image_editor_component,
|
| 210 |
-
|
|
|
|
| 211 |
seed_slicer_component,
|
| 212 |
randomize_seed_checkbox_component,
|
| 213 |
strength_slider_component,
|
|
@@ -225,7 +257,8 @@ with gr.Blocks() as demo:
|
|
| 225 |
fn=process,
|
| 226 |
inputs=[
|
| 227 |
input_image_editor_component,
|
| 228 |
-
|
|
|
|
| 229 |
seed_slicer_component,
|
| 230 |
randomize_seed_checkbox_component,
|
| 231 |
strength_slider_component,
|
|
|
|
| 1 |
from typing import Tuple
|
| 2 |
|
| 3 |
+
import os
|
| 4 |
import requests
|
| 5 |
import random
|
| 6 |
import numpy as np
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
+
from PIL import Image, ImageFilter
|
| 11 |
from diffusers import FluxInpaintPipeline
|
| 12 |
+
from gradio_client import Client, handle_file
|
| 13 |
|
| 14 |
MARKDOWN = """
|
| 15 |
# FLUX.1 Inpainting 🔥
|
|
|
|
| 23 |
IMAGE_SIZE = 1024
|
| 24 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 27 |
+
client = Client("SkalskiP/florence-sam-masking", hf_token=HF_TOKEN)
|
| 28 |
+
|
| 29 |
|
| 30 |
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
| 31 |
image = image.convert("RGBA")
|
|
|
|
| 50 |
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
| 51 |
},
|
| 52 |
"little lion",
|
| 53 |
+
None,
|
| 54 |
42,
|
| 55 |
False,
|
| 56 |
0.85,
|
|
|
|
| 63 |
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
| 64 |
},
|
| 65 |
"tattoos",
|
| 66 |
+
None,
|
| 67 |
42,
|
| 68 |
False,
|
| 69 |
0.85,
|
|
|
|
| 81 |
) -> Tuple[int, int]:
|
| 82 |
width, height = original_resolution_wh
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
if width > height:
|
| 85 |
scaling_factor = maximum_dimension / width
|
| 86 |
else:
|
|
|
|
| 95 |
return new_width, new_height
|
| 96 |
|
| 97 |
|
| 98 |
+
def is_image_empty(image: Image.Image) -> bool:
|
| 99 |
+
gray_img = image.convert("L")
|
| 100 |
+
pixels = list(gray_img.getdata())
|
| 101 |
+
return all(pixel == 0 for pixel in pixels)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
@spaces.GPU(duration=100)
|
| 105 |
def process(
|
| 106 |
input_image_editor: dict,
|
| 107 |
+
inpainting_prompt_text: str,
|
| 108 |
+
masking_prompt_text: str,
|
| 109 |
seed_slicer: int,
|
| 110 |
randomize_seed_checkbox: bool,
|
| 111 |
strength_slider: float,
|
| 112 |
num_inference_steps_slider: int,
|
| 113 |
progress=gr.Progress(track_tqdm=True)
|
| 114 |
):
|
| 115 |
+
if not inpainting_prompt_text:
|
| 116 |
gr.Info("Please enter a text prompt.")
|
| 117 |
return None, None
|
| 118 |
|
| 119 |
+
image_path = input_image_editor['background']
|
| 120 |
+
mask_path = input_image_editor['layers'][0]
|
| 121 |
+
|
| 122 |
+
image = Image.open(image_path)
|
| 123 |
+
mask = Image.open(mask_path)
|
| 124 |
|
| 125 |
if not image:
|
| 126 |
gr.Info("Please upload an image.")
|
| 127 |
return None, None
|
| 128 |
|
| 129 |
+
if is_image_empty(mask) and not masking_prompt_text:
|
| 130 |
+
gr.Info("Please draw a mask or enter a masking prompt.")
|
| 131 |
+
return None, None
|
| 132 |
+
|
| 133 |
+
if not is_image_empty(mask) and masking_prompt_text:
|
| 134 |
+
gr.Info("Both mask and masking prompt are provided. Please provide only one.")
|
| 135 |
return None, None
|
| 136 |
|
| 137 |
+
if is_image_empty(mask):
|
| 138 |
+
mask = client.predict(
|
| 139 |
+
image_input=handle_file(image_path),
|
| 140 |
+
text_input=masking_prompt_text,
|
| 141 |
+
api_name="/process_image")
|
| 142 |
+
mask = Image.open(mask)
|
| 143 |
+
|
| 144 |
+
mask = mask.filter(ImageFilter.GaussianBlur(radius=5))
|
| 145 |
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
| 146 |
resized_image = image.resize((width, height), Image.LANCZOS)
|
| 147 |
resized_mask = mask.resize((width, height), Image.LANCZOS)
|
|
|
|
| 150 |
seed_slicer = random.randint(0, MAX_SEED)
|
| 151 |
generator = torch.Generator().manual_seed(seed_slicer)
|
| 152 |
result = pipe(
|
| 153 |
+
prompt=inpainting_prompt_text,
|
| 154 |
image=resized_image,
|
| 155 |
mask_image=resized_mask,
|
| 156 |
width=width,
|
|
|
|
| 169 |
with gr.Column():
|
| 170 |
input_image_editor_component = gr.ImageEditor(
|
| 171 |
label='Image',
|
| 172 |
+
type='filepath',
|
| 173 |
sources=["upload", "webcam"],
|
| 174 |
image_mode='RGB',
|
| 175 |
layers=False,
|
| 176 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 177 |
|
| 178 |
with gr.Row():
|
| 179 |
+
inpainting_prompt_text_component = gr.Text(
|
| 180 |
label="Prompt",
|
| 181 |
show_label=False,
|
| 182 |
max_lines=1,
|
| 183 |
+
placeholder="Enter text to generate inpainting",
|
| 184 |
container=False,
|
| 185 |
)
|
| 186 |
submit_button_component = gr.Button(
|
| 187 |
value='Submit', variant='primary', scale=0)
|
| 188 |
|
| 189 |
with gr.Accordion("Advanced Settings", open=False):
|
| 190 |
+
masking_prompt_text_component = gr.Text(
|
| 191 |
+
label="Prompt",
|
| 192 |
+
show_label=False,
|
| 193 |
+
max_lines=1,
|
| 194 |
+
placeholder="Enter text to generate masking",
|
| 195 |
+
container=False,
|
| 196 |
+
)
|
| 197 |
seed_slicer_component = gr.Slider(
|
| 198 |
label="Seed",
|
| 199 |
minimum=0,
|
|
|
|
| 238 |
examples=EXAMPLES,
|
| 239 |
inputs=[
|
| 240 |
input_image_editor_component,
|
| 241 |
+
inpainting_prompt_text_component,
|
| 242 |
+
masking_prompt_text_component,
|
| 243 |
seed_slicer_component,
|
| 244 |
randomize_seed_checkbox_component,
|
| 245 |
strength_slider_component,
|
|
|
|
| 257 |
fn=process,
|
| 258 |
inputs=[
|
| 259 |
input_image_editor_component,
|
| 260 |
+
inpainting_prompt_text_component,
|
| 261 |
+
masking_prompt_text_component,
|
| 262 |
seed_slicer_component,
|
| 263 |
randomize_seed_checkbox_component,
|
| 264 |
strength_slider_component,
|