Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- app.py +45 -0
- background_task.py +247 -0
- matchmaking.py +76 -0
- requirements.txt +5 -0
- utils.py +13 -0
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import HfApi
|
| 3 |
+
from matchmaking import *
|
| 4 |
+
from background_task import init_matchmaking, get_elo_data
|
| 5 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
+
from utils import *
|
| 7 |
+
|
| 8 |
+
matchmaking = Matchmaking()
|
| 9 |
+
api = HfApi()
|
| 10 |
+
|
| 11 |
+
# launch
|
| 12 |
+
scheduler = BackgroundScheduler()
|
| 13 |
+
scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=300)
|
| 14 |
+
scheduler.start()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def update_elos():
|
| 18 |
+
matchmaking.read_history()
|
| 19 |
+
matchmaking.compute_elo()
|
| 20 |
+
matchmaking.save_elo_data()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
with gr.Blocks() as block:
|
| 24 |
+
gr.Markdown(f"""
|
| 25 |
+
# 🏆 AI vs. AI SoccerTwos Leaderboard ⚽
|
| 26 |
+
|
| 27 |
+
In this leaderboard, you can find the ELO score and the rank of your trained model for the SoccerTwos environment.
|
| 28 |
+
|
| 29 |
+
If you want to know more about a model, just **copy the username and model and paste them into the search bar**.
|
| 30 |
+
|
| 31 |
+
👀 To visualize your agents competing check this demo: https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
|
| 32 |
+
|
| 33 |
+
🤖 For more information about this AI vs. AI challenge and to participate? [Check this](https://huggingface.co/deep-rl-course/unit7)
|
| 34 |
+
""")
|
| 35 |
+
with gr.Row():
|
| 36 |
+
output = gr.components.Dataframe(
|
| 37 |
+
value=get_elo_data,
|
| 38 |
+
headers=["Ranking 🏆", "User 🤗", "Model id 🤖", "ELO 🚀", "Games played 🎮"],
|
| 39 |
+
datatype=["number", "markdown", "markdown", "number", "number"]
|
| 40 |
+
)
|
| 41 |
+
with gr.Row():
|
| 42 |
+
refresh = gr.Button("Refresh")
|
| 43 |
+
refresh.click(get_elo_data, inputs=[], outputs=output)
|
| 44 |
+
|
| 45 |
+
block.launch()
|
background_task.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import subprocess
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from huggingface_hub import HfApi, Repository
|
| 7 |
+
from utils import *
|
| 8 |
+
|
| 9 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/bot-fight-data"
|
| 10 |
+
DATASET_TEMP_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/temp-match-results"
|
| 11 |
+
FILTER_FILE = "https://huggingface.co/datasets/huggingface-projects/filter-bad-models/raw/main/bad_models.csv"
|
| 12 |
+
ELO_FILENAME = "soccer_elo.csv"
|
| 13 |
+
HISTORY_FILENAME = "soccer_history.csv"
|
| 14 |
+
TEMP_FILENAME = "results.csv"
|
| 15 |
+
ELO_DIR = "soccer_elo"
|
| 16 |
+
TEMP_DIR = "temp"
|
| 17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
+
|
| 19 |
+
repo = Repository(
|
| 20 |
+
local_dir=ELO_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
| 21 |
+
)
|
| 22 |
+
repo_temp = Repository(
|
| 23 |
+
local_dir=TEMP_DIR, clone_from=DATASET_TEMP_REPO_URL, use_auth_token=HF_TOKEN
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
api = HfApi()
|
| 27 |
+
os.chmod('./SoccerTows.x86_64', 0o755)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class Model:
|
| 31 |
+
"""
|
| 32 |
+
Class containing the info of a model.
|
| 33 |
+
|
| 34 |
+
:param name: Name of the model
|
| 35 |
+
:param elo: Elo rating of the model
|
| 36 |
+
:param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, author, name, elo=1200, games_played=0):
|
| 40 |
+
self.author = author
|
| 41 |
+
self.name = name
|
| 42 |
+
self.elo = elo
|
| 43 |
+
self.games_played = games_played
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class Matchmaking:
|
| 47 |
+
"""
|
| 48 |
+
Class managing the matchmaking between the models.
|
| 49 |
+
|
| 50 |
+
:param models: List of models
|
| 51 |
+
:param queue: Temporary list of models used for the matching process
|
| 52 |
+
:param k: Dev coefficient
|
| 53 |
+
:param max_diff: Maximum difference considered between two models' elo
|
| 54 |
+
:param matches: Dictionary containing the match history (to later upload as CSV)
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
def __init__(self, models):
|
| 58 |
+
self.models = models
|
| 59 |
+
self.queue = self.models.copy()
|
| 60 |
+
self.k = 20
|
| 61 |
+
self.max_diff = 500
|
| 62 |
+
self.matches = {
|
| 63 |
+
"model1": [],
|
| 64 |
+
"model2": [],
|
| 65 |
+
"timestamp": [],
|
| 66 |
+
"result": [],
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
def run(self):
|
| 70 |
+
"""
|
| 71 |
+
Run the matchmaking process.
|
| 72 |
+
Add models to the queue, shuffle it, and match the models one by one to models with close ratings.
|
| 73 |
+
Compute the new elo for each model after each match and add the match to the match history.
|
| 74 |
+
"""
|
| 75 |
+
self.queue = self.models.copy()
|
| 76 |
+
random.shuffle(self.queue)
|
| 77 |
+
while len(self.queue) > 1:
|
| 78 |
+
print(f"Queue length: {len(self.queue)}")
|
| 79 |
+
model1 = self.queue.pop(0)
|
| 80 |
+
model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
|
| 81 |
+
match(model1, model2)
|
| 82 |
+
self.load_results()
|
| 83 |
+
|
| 84 |
+
def load_results(self):
|
| 85 |
+
""" Load the match history from the hub. """
|
| 86 |
+
repo.git_pull()
|
| 87 |
+
results = pd.read_csv(
|
| 88 |
+
"https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
|
| 89 |
+
)
|
| 90 |
+
# while len(results) < len(self.matches["model1"]):
|
| 91 |
+
# time.sleep(60)
|
| 92 |
+
# results = pd.read_csv(
|
| 93 |
+
# "https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
|
| 94 |
+
# )
|
| 95 |
+
|
| 96 |
+
for i, row in results.iterrows():
|
| 97 |
+
model1 = row["model1"].split("/")
|
| 98 |
+
model2 = row["model2"].split("/")
|
| 99 |
+
model1 = self.find_model(model1[0], model1[1])
|
| 100 |
+
model2 = self.find_model(model2[0], model2[1])
|
| 101 |
+
result = row["result"]
|
| 102 |
+
if model1 is not None or model2 is not None:
|
| 103 |
+
self.compute_elo(model1, model2, row["result"])
|
| 104 |
+
self.matches["model1"].append(model1.author + "/" + model1.name)
|
| 105 |
+
self.matches["model2"].append(model2.author + "/" + model2.name)
|
| 106 |
+
self.matches["result"].append(result)
|
| 107 |
+
self.matches["timestamp"].append(row["timestamp"])
|
| 108 |
+
model1.games_played += 1
|
| 109 |
+
model2.games_played += 1
|
| 110 |
+
data_dict = {"model1": [], "model2": [], "timestamp": [], "result": []}
|
| 111 |
+
df = pd.DataFrame(data_dict)
|
| 112 |
+
print(df.head())
|
| 113 |
+
repo_temp.git_pull()
|
| 114 |
+
df.to_csv(os.path.join(TEMP_DIR, TEMP_FILENAME), index=False)
|
| 115 |
+
repo_temp.push_to_hub(commit_message="Reset results.csv")
|
| 116 |
+
|
| 117 |
+
def find_model(self, author, name):
|
| 118 |
+
""" Find a model in the models list. """
|
| 119 |
+
for model in self.models:
|
| 120 |
+
if model.author == author and model.name == name:
|
| 121 |
+
return model
|
| 122 |
+
return None
|
| 123 |
+
|
| 124 |
+
def compute_elo(self, model1, model2, result):
|
| 125 |
+
""" Compute the new elo for each model based on a match result. """
|
| 126 |
+
delta = model1.elo - model2.elo
|
| 127 |
+
win_probability = 1 / (1 + 10 ** (-delta / 500))
|
| 128 |
+
model1.elo += self.k * (result - win_probability)
|
| 129 |
+
model2.elo -= self.k * (result - win_probability)
|
| 130 |
+
|
| 131 |
+
def find_n_closest_indexes(self, model, n) -> int:
|
| 132 |
+
"""
|
| 133 |
+
Get a model index with a fairly close rating. If no model is found, return the last model in the queue.
|
| 134 |
+
We don't always pick the closest rating to add variety to the matchups.
|
| 135 |
+
|
| 136 |
+
:param model: Model to compare
|
| 137 |
+
:param n: Number of close models from which to pick a candidate
|
| 138 |
+
:return: id of the chosen candidate
|
| 139 |
+
"""
|
| 140 |
+
if len(self.queue) == 1:
|
| 141 |
+
return 0
|
| 142 |
+
indexes = []
|
| 143 |
+
closest_diffs = [9999999] * n
|
| 144 |
+
for i, m in enumerate(self.queue):
|
| 145 |
+
modelid1 = model.author + "/" + model.name
|
| 146 |
+
modelid2 = m.author + "/" + m.name
|
| 147 |
+
if modelid1 == modelid2:
|
| 148 |
+
continue
|
| 149 |
+
diff = abs(m.elo - model.elo)
|
| 150 |
+
if diff < max(closest_diffs):
|
| 151 |
+
closest_diffs.append(diff)
|
| 152 |
+
closest_diffs.sort()
|
| 153 |
+
closest_diffs.pop()
|
| 154 |
+
indexes.append(i)
|
| 155 |
+
random.shuffle(indexes)
|
| 156 |
+
return indexes[0]
|
| 157 |
+
|
| 158 |
+
def to_csv(self):
|
| 159 |
+
""" Save the match history as a CSV file to the hub. """
|
| 160 |
+
data_dict = {"rank": [], "author": [], "model": [], "elo": [], "games_played": []}
|
| 161 |
+
sorted_models = sorted(self.models, key=lambda x: x.elo, reverse=True)
|
| 162 |
+
for i, model in enumerate(sorted_models):
|
| 163 |
+
data_dict["rank"].append(i + 1)
|
| 164 |
+
data_dict["author"].append(model.author)
|
| 165 |
+
data_dict["model"].append(model.name)
|
| 166 |
+
data_dict["elo"].append(model.elo)
|
| 167 |
+
data_dict["games_played"].append(model.games_played)
|
| 168 |
+
df = pd.DataFrame(data_dict)
|
| 169 |
+
print(df.head())
|
| 170 |
+
repo.git_pull()
|
| 171 |
+
history = pd.read_csv(os.path.join(ELO_DIR, HISTORY_FILENAME))
|
| 172 |
+
new_history = pd.DataFrame(self.matches)
|
| 173 |
+
history = pd.concat([history, new_history])
|
| 174 |
+
history.to_csv(os.path.join(ELO_DIR, HISTORY_FILENAME), index=False)
|
| 175 |
+
df.to_csv(os.path.join(ELO_DIR, ELO_FILENAME), index=False)
|
| 176 |
+
repo.push_to_hub(commit_message="Update ELO")
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def match(model1, model2):
|
| 180 |
+
"""
|
| 181 |
+
Simulate a match between two models using the Unity environment.
|
| 182 |
+
|
| 183 |
+
:param model1: First Model object
|
| 184 |
+
:param model2: Second Model object
|
| 185 |
+
:return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
|
| 186 |
+
"""
|
| 187 |
+
model1_id = model1.author + "/" + model1.name
|
| 188 |
+
model2_id = model2.author + "/" + model2.name
|
| 189 |
+
print(f"Running {model1_id} against {model2_id}...")
|
| 190 |
+
subprocess.run(["./SoccerTows.x86_64", "-model1", model1_id, "-model2", model2_id, "-nographics", "-batchmode"])
|
| 191 |
+
print(f"Match {model1_id} against {model2_id} ended.")
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def get_models_list(filter_bad_models) -> list:
|
| 195 |
+
"""
|
| 196 |
+
Get the list of models from the hub and the ELO file.
|
| 197 |
+
|
| 198 |
+
:return: list of Model objects
|
| 199 |
+
"""
|
| 200 |
+
models = []
|
| 201 |
+
models_ids = []
|
| 202 |
+
data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))
|
| 203 |
+
models_on_hub = api.list_models(filter=["reinforcement-learning", "ml-agents", "ML-Agents-SoccerTwos", "onnx"])
|
| 204 |
+
for i, row in data.iterrows():
|
| 205 |
+
model_id = row["author"] + "/" + row["model"]
|
| 206 |
+
if model_id in filter_bad_models:
|
| 207 |
+
continue
|
| 208 |
+
models.append(Model(row["author"], row["model"], row["elo"], row["games_played"]))
|
| 209 |
+
models_ids.append(model_id)
|
| 210 |
+
for model in models_on_hub:
|
| 211 |
+
if model.modelId in filter_bad_models:
|
| 212 |
+
continue
|
| 213 |
+
author, name = model.modelId.split("/")[0], model.modelId.split("/")[1]
|
| 214 |
+
if model.modelId not in models_ids:
|
| 215 |
+
models.append(Model(author, name))
|
| 216 |
+
print("New model found: ", author, "-", name)
|
| 217 |
+
return models
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def get_elo_data() -> pd.DataFrame:
|
| 221 |
+
"""
|
| 222 |
+
Get the ELO data from the hub for all the models that have played at least one game.
|
| 223 |
+
|
| 224 |
+
:return: ELO data as a pandas DataFrame
|
| 225 |
+
"""
|
| 226 |
+
repo.git_pull()
|
| 227 |
+
data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))
|
| 228 |
+
|
| 229 |
+
return data
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def init_matchmaking():
|
| 233 |
+
"""
|
| 234 |
+
Run the matchmaking algorithm and save the results to the hub.
|
| 235 |
+
|
| 236 |
+
1. Get the list of models from the hub and the ELO data
|
| 237 |
+
2. Match models together based on their ELO rating
|
| 238 |
+
3. Simulate the matches using Unity to get the match result
|
| 239 |
+
4. Compute the new ELO rating for each model
|
| 240 |
+
5. Save the results to the hub
|
| 241 |
+
"""
|
| 242 |
+
filter_bad_models = pd.read_csv(FILTER_FILE)["model"].tolist()
|
| 243 |
+
models = get_models_list(filter_bad_models)
|
| 244 |
+
matchmaking = Matchmaking(models)
|
| 245 |
+
matchmaking.run()
|
| 246 |
+
matchmaking.to_csv()
|
| 247 |
+
print("Matchmaking done --", datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
matchmaking.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Model:
|
| 7 |
+
"""
|
| 8 |
+
Class containing the info of a model.
|
| 9 |
+
|
| 10 |
+
:param name: Name of the model
|
| 11 |
+
:param elo: Elo rating of the model
|
| 12 |
+
:param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
|
| 13 |
+
"""
|
| 14 |
+
def __init__(self, name, elo):
|
| 15 |
+
self.name = name
|
| 16 |
+
self.elo = elo
|
| 17 |
+
self.games_played = 0
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class Matchmaking:
|
| 21 |
+
"""
|
| 22 |
+
Class managing the matchmaking between the models.
|
| 23 |
+
|
| 24 |
+
:param models: List of models
|
| 25 |
+
:param queue: Temporary list of models used for the matching process
|
| 26 |
+
:param k: Dev coefficient
|
| 27 |
+
:param max_diff: Maximum difference considered between two models' elo
|
| 28 |
+
:param matches: Dictionary containing the match history (to later upload as CSV)
|
| 29 |
+
"""
|
| 30 |
+
def __init__(self):
|
| 31 |
+
self.models = []
|
| 32 |
+
self.queue = []
|
| 33 |
+
self.start_elo = 1200
|
| 34 |
+
self.k = 20
|
| 35 |
+
self.max_diff = 500
|
| 36 |
+
self.matches = pd.DataFrame()
|
| 37 |
+
|
| 38 |
+
def read_history(self):
|
| 39 |
+
""" Read the match history from the CSV files, concat the Dataframes and sort them by datetime. """
|
| 40 |
+
path = "match_history"
|
| 41 |
+
files = os.listdir(path)
|
| 42 |
+
for file in files:
|
| 43 |
+
self.matches = pd.concat([self.matches, pd.read_csv(os.path.join(path, file))], ignore_index=True)
|
| 44 |
+
self.matches["datetime"] = pd.to_datetime(self.matches["datetime"], format="%Y-%m-%d %H:%M:%S.%f", errors="coerce")
|
| 45 |
+
self.matches = self.matches.dropna()
|
| 46 |
+
self.matches = self.matches.sort_values("datetime")
|
| 47 |
+
self.matches.reset_index(drop=True, inplace=True)
|
| 48 |
+
model_names = self.matches["model1"].unique()
|
| 49 |
+
self.models = [Model(name, self.start_elo) for name in model_names]
|
| 50 |
+
|
| 51 |
+
def compute_elo(self):
|
| 52 |
+
""" Compute the elo for each model after each match. """
|
| 53 |
+
for i, row in self.matches.iterrows():
|
| 54 |
+
model1 = self.get_model(row["model1"])
|
| 55 |
+
model2 = self.get_model(row["model2"])
|
| 56 |
+
result = row["result"]
|
| 57 |
+
delta = model1.elo - model2.elo
|
| 58 |
+
win_probability = 1 / (1 + 10 ** (-delta / 500))
|
| 59 |
+
model1.elo += self.k * (result - win_probability)
|
| 60 |
+
model2.elo -= self.k * (result - win_probability)
|
| 61 |
+
model1.games_played += 1
|
| 62 |
+
model2.games_played += 1
|
| 63 |
+
|
| 64 |
+
def save_elo_data(self):
|
| 65 |
+
""" Save the match history as a CSV file to the hub. """
|
| 66 |
+
df = pd.DataFrame(columns=['name', 'elo'])
|
| 67 |
+
for model in self.models:
|
| 68 |
+
df = pd.concat([df, pd.DataFrame([[model.name, model.elo]], columns=['name', 'elo'])])
|
| 69 |
+
df.to_csv('elo.csv', index=False)
|
| 70 |
+
|
| 71 |
+
def get_model(self, name):
|
| 72 |
+
""" Return the Model with the given name. """
|
| 73 |
+
for model in self.models:
|
| 74 |
+
if model.name == name:
|
| 75 |
+
return model
|
| 76 |
+
return None
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
requests~=2.28.1
|
| 2 |
+
gradio~=3.14.0
|
| 3 |
+
pandas~=1.5.2
|
| 4 |
+
datasets~=2.8.0
|
| 5 |
+
APScheduler~=3.9.1.post1
|
utils.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Based on Omar Sanseviero work
|
| 2 |
+
# Make model clickable link
|
| 3 |
+
def make_clickable_model(model_name):
|
| 4 |
+
# remove user from model name
|
| 5 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
| 6 |
+
|
| 7 |
+
link = "https://huggingface.co/" + model_name
|
| 8 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
| 9 |
+
|
| 10 |
+
# Make user clickable link
|
| 11 |
+
def make_clickable_user(user_id):
|
| 12 |
+
link = "https://huggingface.co/" + user_id
|
| 13 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|