Spaces:
Running
on
Zero
Running
on
Zero
first
Browse files- .gitattributes +3 -0
- .gitignore +2 -0
- app.py +161 -0
- examples/init.jpeg +3 -0
- examples/qrcode.png +3 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
venv
|
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from diffusers import (
|
| 5 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
| 6 |
+
ControlNetModel,
|
| 7 |
+
DDIMScheduler,
|
| 8 |
+
)
|
| 9 |
+
from diffusers.utils import load_image
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 13 |
+
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 17 |
+
"runwayml/stable-diffusion-v1-5",
|
| 18 |
+
controlnet=controlnet,
|
| 19 |
+
safety_checker=None,
|
| 20 |
+
torch_dtype=torch.float16,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 24 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 25 |
+
pipe.enable_model_cpu_offload()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
| 29 |
+
input_image = input_image.convert("RGB")
|
| 30 |
+
W, H = input_image.size
|
| 31 |
+
k = float(resolution) / min(H, W)
|
| 32 |
+
H *= k
|
| 33 |
+
W *= k
|
| 34 |
+
H = int(round(H / 64.0)) * 64
|
| 35 |
+
W = int(round(W / 64.0)) * 64
|
| 36 |
+
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
| 37 |
+
return img
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def inference(
|
| 41 |
+
init_image: Image.Image,
|
| 42 |
+
qrcode_image: Image.Image,
|
| 43 |
+
prompt: str,
|
| 44 |
+
negative_prompt: str,
|
| 45 |
+
guidance_scale: float = 10.0,
|
| 46 |
+
controlnet_conditioning_scale: float = 2.0,
|
| 47 |
+
strength: float = 0.8,
|
| 48 |
+
seed: int = -1,
|
| 49 |
+
num_inference_steps: int = 50,
|
| 50 |
+
):
|
| 51 |
+
init_image = resize_for_condition_image(init_image, 768)
|
| 52 |
+
qrcode_image = resize_for_condition_image(qrcode_image, 768)
|
| 53 |
+
|
| 54 |
+
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 55 |
+
|
| 56 |
+
out = pipe(
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
negative_prompt=negative_prompt,
|
| 59 |
+
image=init_image, # type: ignore
|
| 60 |
+
control_image=qrcode_image, # type: ignore
|
| 61 |
+
width=768, # type: ignore
|
| 62 |
+
height=768, # type: ignore
|
| 63 |
+
guidance_scale=guidance_scale,
|
| 64 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale, # type: ignore
|
| 65 |
+
generator=generator,
|
| 66 |
+
strength=strength,
|
| 67 |
+
num_inference_steps=num_inference_steps,
|
| 68 |
+
) # type: ignore
|
| 69 |
+
return out.images[0]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
with gr.Blocks() as blocks:
|
| 73 |
+
gr.Markdown(
|
| 74 |
+
"""# AI QR Code Generator
|
| 75 |
+
|
| 76 |
+
model by: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15
|
| 77 |
+
"""
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
with gr.Column():
|
| 82 |
+
init_image = gr.Image(label="Init Image", type="pil")
|
| 83 |
+
qr_code_image = gr.Image(label="QR Code Image", type="pil")
|
| 84 |
+
prompt = gr.Textbox(label="Prompt")
|
| 85 |
+
negative_prompt = gr.Textbox(
|
| 86 |
+
label="Negative Prompt",
|
| 87 |
+
value="ugly, disfigured, low quality, blurry, nsfw",
|
| 88 |
+
)
|
| 89 |
+
with gr.Accordion(label="Params"):
|
| 90 |
+
guidance_scale = gr.Slider(
|
| 91 |
+
minimum=0.0,
|
| 92 |
+
maximum=50.0,
|
| 93 |
+
step=0.1,
|
| 94 |
+
value=10.0,
|
| 95 |
+
label="Guidance Scale",
|
| 96 |
+
)
|
| 97 |
+
controlnet_conditioning_scale = gr.Slider(
|
| 98 |
+
minimum=0.0,
|
| 99 |
+
maximum=5.0,
|
| 100 |
+
step=0.1,
|
| 101 |
+
value=2.0,
|
| 102 |
+
label="Controlnet Conditioning Scale",
|
| 103 |
+
)
|
| 104 |
+
strength = gr.Slider(
|
| 105 |
+
minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="Strength"
|
| 106 |
+
)
|
| 107 |
+
seed = gr.Slider(
|
| 108 |
+
minimum=-1,
|
| 109 |
+
maximum=9999999999,
|
| 110 |
+
step=1,
|
| 111 |
+
value=2313123,
|
| 112 |
+
label="Seed",
|
| 113 |
+
randomize=True,
|
| 114 |
+
)
|
| 115 |
+
run_btn = gr.Button("Run")
|
| 116 |
+
with gr.Column():
|
| 117 |
+
result_image = gr.Image(label="Result Image")
|
| 118 |
+
run_btn.click(
|
| 119 |
+
inference,
|
| 120 |
+
inputs=[
|
| 121 |
+
init_image,
|
| 122 |
+
qr_code_image,
|
| 123 |
+
prompt,
|
| 124 |
+
negative_prompt,
|
| 125 |
+
guidance_scale,
|
| 126 |
+
controlnet_conditioning_scale,
|
| 127 |
+
strength,
|
| 128 |
+
seed,
|
| 129 |
+
],
|
| 130 |
+
outputs=[result_image],
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
gr.Examples(
|
| 134 |
+
examples=[
|
| 135 |
+
[
|
| 136 |
+
"./examples/init.jpeg",
|
| 137 |
+
"./examples/qrcode.png",
|
| 138 |
+
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
| 139 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
| 140 |
+
10.0,
|
| 141 |
+
2.0,
|
| 142 |
+
0.8,
|
| 143 |
+
2313123,
|
| 144 |
+
]
|
| 145 |
+
],
|
| 146 |
+
fn=inference,
|
| 147 |
+
inputs=[
|
| 148 |
+
init_image,
|
| 149 |
+
qr_code_image,
|
| 150 |
+
prompt,
|
| 151 |
+
negative_prompt,
|
| 152 |
+
guidance_scale,
|
| 153 |
+
controlnet_conditioning_scale,
|
| 154 |
+
strength,
|
| 155 |
+
seed,
|
| 156 |
+
],
|
| 157 |
+
outputs=[result_image],
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
blocks.queue()
|
| 161 |
+
blocks.launch()
|
examples/init.jpeg
ADDED
|
Git LFS Details
|
examples/qrcode.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers
|
| 2 |
+
transformers
|
| 3 |
+
accelerate
|
| 4 |
+
torch
|
| 5 |
+
xformers
|
| 6 |
+
gradio
|
| 7 |
+
Pillow
|