Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ef9dee0
1
Parent(s):
1aabc2d
up
Browse files
app.py
CHANGED
|
@@ -96,8 +96,6 @@ def txt_to_img(
|
|
| 96 |
neg_prompt,
|
| 97 |
guidance,
|
| 98 |
steps,
|
| 99 |
-
width,
|
| 100 |
-
height,
|
| 101 |
generator,
|
| 102 |
):
|
| 103 |
pipe = MODELS[model_name].pipe_t2i
|
|
@@ -111,15 +109,13 @@ def txt_to_img(
|
|
| 111 |
negative_prompt=neg_prompt,
|
| 112 |
num_inference_steps=int(steps),
|
| 113 |
guidance_scale=guidance,
|
| 114 |
-
width=width,
|
| 115 |
-
height=height,
|
| 116 |
generator=generator,
|
| 117 |
output_type="latent",
|
| 118 |
).images
|
| 119 |
|
| 120 |
with torch.no_grad():
|
| 121 |
low_res_image = pipe.decode_latents(low_res_latents)
|
| 122 |
-
low_res_image = pipe.numpy_to_pil(low_res_image)
|
| 123 |
|
| 124 |
up_res_image = UPSCALER(
|
| 125 |
prompt=prompt,
|
|
@@ -128,7 +124,7 @@ def txt_to_img(
|
|
| 128 |
num_inference_steps=20,
|
| 129 |
guidance_scale=0,
|
| 130 |
generator=generator,
|
| 131 |
-
).images
|
| 132 |
|
| 133 |
pipe.to("cpu")
|
| 134 |
torch.cuda.empty_cache()
|
|
@@ -225,14 +221,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 225 |
step=1,
|
| 226 |
)
|
| 227 |
|
| 228 |
-
with gr.Row():
|
| 229 |
-
width = gr.Slider(
|
| 230 |
-
label="Width", value=512, minimum=64, maximum=1024, step=8
|
| 231 |
-
)
|
| 232 |
-
height = gr.Slider(
|
| 233 |
-
label="Height", value=512, minimum=64, maximum=1024, step=8
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
seed = gr.Slider(
|
| 237 |
0, 2147483647, label="Seed (0 = random)", value=0, step=1
|
| 238 |
)
|
|
@@ -242,8 +230,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 242 |
prompt,
|
| 243 |
guidance,
|
| 244 |
steps,
|
| 245 |
-
width,
|
| 246 |
-
height,
|
| 247 |
seed,
|
| 248 |
neg_prompt,
|
| 249 |
]
|
|
|
|
| 96 |
neg_prompt,
|
| 97 |
guidance,
|
| 98 |
steps,
|
|
|
|
|
|
|
| 99 |
generator,
|
| 100 |
):
|
| 101 |
pipe = MODELS[model_name].pipe_t2i
|
|
|
|
| 109 |
negative_prompt=neg_prompt,
|
| 110 |
num_inference_steps=int(steps),
|
| 111 |
guidance_scale=guidance,
|
|
|
|
|
|
|
| 112 |
generator=generator,
|
| 113 |
output_type="latent",
|
| 114 |
).images
|
| 115 |
|
| 116 |
with torch.no_grad():
|
| 117 |
low_res_image = pipe.decode_latents(low_res_latents)
|
| 118 |
+
low_res_image = pipe.numpy_to_pil(low_res_image)
|
| 119 |
|
| 120 |
up_res_image = UPSCALER(
|
| 121 |
prompt=prompt,
|
|
|
|
| 124 |
num_inference_steps=20,
|
| 125 |
guidance_scale=0,
|
| 126 |
generator=generator,
|
| 127 |
+
).images
|
| 128 |
|
| 129 |
pipe.to("cpu")
|
| 130 |
torch.cuda.empty_cache()
|
|
|
|
| 221 |
step=1,
|
| 222 |
)
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
seed = gr.Slider(
|
| 225 |
0, 2147483647, label="Seed (0 = random)", value=0, step=1
|
| 226 |
)
|
|
|
|
| 230 |
prompt,
|
| 231 |
guidance,
|
| 232 |
steps,
|
|
|
|
|
|
|
| 233 |
seed,
|
| 234 |
neg_prompt,
|
| 235 |
]
|