Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import os
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer
|
| 6 |
+
import meilisearch
|
| 7 |
+
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained('Snowflake/snowflake-arctic-embed-m')
|
| 9 |
+
model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-m', add_pooling_layer=False)
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
cuda_available = torch.cuda.is_available()
|
| 13 |
+
print(f"CUDA available: {cuda_available}")
|
| 14 |
+
|
| 15 |
+
meilisearch_client = meilisearch.Client("https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"])
|
| 16 |
+
meilisearch_index_name = "docs-embed"
|
| 17 |
+
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
|
| 18 |
+
|
| 19 |
+
def search_embeddings(query_text):
|
| 20 |
+
start_time_embedding = time.time()
|
| 21 |
+
query_prefix = 'Represent this sentence for searching code documentation: '
|
| 22 |
+
query_tokens = tokenizer(query_prefix + query_text, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 23 |
+
# step1: tokenizer the query
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
# Compute token embeddings
|
| 26 |
+
query_embeddings = model(**query_tokens)[0][:, 0]
|
| 27 |
+
# normalize embeddings
|
| 28 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
|
| 29 |
+
document_embeddings_list = query_embeddings[0].tolist()
|
| 30 |
+
elapsed_time_embedding = time.time() - start_time_embedding
|
| 31 |
+
|
| 32 |
+
# step2: search meilisearch
|
| 33 |
+
start_time_meilisearch = time.time()
|
| 34 |
+
response = meilisearch_index.search(
|
| 35 |
+
"", opt_params={"vector": document_embeddings_list, "hybrid": {"semanticRatio": 1.0}, "limit": 5, "attributesToRetrieve": ["text", "source", "library"]}
|
| 36 |
+
)
|
| 37 |
+
elapsed_time_meilisearch = time.time() - start_time_meilisearch
|
| 38 |
+
hits = response["hits"]
|
| 39 |
+
|
| 40 |
+
# step3: present the results in markdown
|
| 41 |
+
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
|
| 42 |
+
for hit in hits:
|
| 43 |
+
text, source, library = hit["text"], hit["source"], hit["library"]
|
| 44 |
+
source = f"[source](https://huggingface.co/docs/{library}/{source})"
|
| 45 |
+
md += text + f"\n\n{source}\n\n---\n\n"
|
| 46 |
+
|
| 47 |
+
return md
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
demo = gr.Interface(
|
| 51 |
+
fn=search_embeddings,
|
| 52 |
+
inputs=gr.Textbox(label="enter your query", placeholder="Type Markdown here...", lines=10),
|
| 53 |
+
outputs=gr.Markdown(),
|
| 54 |
+
title="HF Docs Emebddings Explorer",
|
| 55 |
+
allow_flagging="never"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
demo.launch()
|