Spaces:
Running
Running
| import requests | |
| import json | |
| import pandas as pd | |
| from tqdm.auto import tqdm | |
| import streamlit as st | |
| from huggingface_hub import HfApi, hf_hub_download | |
| from huggingface_hub.repocard import metadata_load | |
| aliases_lang = {"sv": "sv-SE"} | |
| cer_langs = ["ja", "zh-CN", "zh-HK", "zh-TW"] | |
| with open("languages.json") as f: | |
| lang2name = json.load(f) | |
| suggested_datasets = [ | |
| "librispeech_asr", | |
| "mozilla-foundation/common_voice_8_0", | |
| "mozilla-foundation/common_voice_11_0", | |
| "speech-recognition-community-v2/eval_data", | |
| "facebook/multilingual_librispeech" | |
| ] | |
| def make_clickable(model_name): | |
| link = "https://huggingface.co/" + model_name | |
| return f'<a target="_blank" href="{link}">{model_name}</a>' | |
| def get_model_ids(): | |
| api = HfApi() | |
| models = api.list_models(filter="hf-asr-leaderboard") | |
| model_ids = [x.modelId for x in models] | |
| return model_ids | |
| def get_metadata(model_id): | |
| try: | |
| readme_path = hf_hub_download(model_id, filename="README.md") | |
| return metadata_load(readme_path) | |
| except: | |
| # 404 README.md not found | |
| print(f"Model id: {model_id} is not great!") | |
| return None | |
| def parse_metric_value(value): | |
| if isinstance(value, str): | |
| "".join(value.split("%")) | |
| try: | |
| value = float(value) | |
| except: # noqa: E722 | |
| value = None | |
| elif isinstance(value, float) and value < 1.1: | |
| # assuming that WER is given in 0.xx format | |
| value = 100 * value | |
| elif isinstance(value, list): | |
| if len(value) > 0: | |
| value = value[0] | |
| else: | |
| value = None | |
| value = round(value, 2) if value is not None else None | |
| return value | |
| def parse_metrics_rows(meta): | |
| if "model-index" not in meta or "language" not in meta: | |
| return None | |
| for result in meta["model-index"][0]["results"]: | |
| if "dataset" not in result or "metrics" not in result: | |
| continue | |
| dataset = result["dataset"]["type"] | |
| if "args" in result["dataset"] and isinstance(result["dataset"]["args"], dict) and "language" in result["dataset"]["args"]: | |
| lang = result["dataset"]["args"]["language"] | |
| else: | |
| lang = meta["language"] | |
| lang = lang[0] if isinstance(lang, list) else lang | |
| lang = aliases_lang[lang] if lang in aliases_lang else lang | |
| config = result["dataset"]["config"] if "config" in result["dataset"] else lang | |
| split = result["dataset"]["split"] if "split" in result["dataset"] else None | |
| row = { | |
| "dataset": dataset, | |
| "lang": lang, | |
| "config": config, | |
| "split": split | |
| } | |
| for metric in result["metrics"]: | |
| type = metric["type"].lower().strip() | |
| if type not in ["wer", "cer"]: | |
| continue | |
| value = parse_metric_value(metric["value"]) | |
| if value is None: | |
| continue | |
| if type not in row or value < row[type]: | |
| # overwrite the metric if the new value is lower (e.g. with LM) | |
| row[type] = value | |
| if "wer" in row or "cer" in row: | |
| yield row | |
| def get_data(): | |
| data = [] | |
| model_ids = get_model_ids() | |
| for model_id in tqdm(model_ids): | |
| meta = get_metadata(model_id) | |
| if meta is None: | |
| continue | |
| for row in parse_metrics_rows(meta): | |
| if row is None: | |
| continue | |
| row["model_id"] = model_id | |
| data.append(row) | |
| return pd.DataFrame.from_records(data) | |
| def sort_datasets(datasets): | |
| # 1. sort by name | |
| datasets = sorted(datasets) | |
| # 2. bring the suggested datasets to the top and append the rest | |
| datasets = sorted( | |
| datasets, | |
| key=lambda dataset_id: suggested_datasets.index(dataset_id) | |
| if dataset_id in suggested_datasets | |
| else len(suggested_datasets), | |
| ) | |
| return datasets | |
| def generate_dataset_info(datasets): | |
| msg = """ | |
| The models have been trained and/or evaluated on the following datasets: | |
| """ | |
| for dataset_id in datasets: | |
| if dataset_id in suggested_datasets: | |
| msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id}) *(recommended)*\n" | |
| else: | |
| msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id})\n" | |
| msg = "\n".join([line.strip() for line in msg.split("\n")]) | |
| return msg | |
| dataframe = get_data() | |
| dataframe = dataframe.fillna("") | |
| st.sidebar.image("logo.png", width=200) | |
| st.markdown("# The π€ Speech Bench") | |
| st.markdown( | |
| f"This is a leaderboard of **{dataframe['model_id'].nunique()}** speech recognition models " | |
| f"and **{dataframe['dataset'].nunique()}** datasets.\n\n" | |
| "β¬ Please select the language you want to find a model for from the dropdown on the left." | |
| ) | |
| lang = st.sidebar.selectbox( | |
| "Language", | |
| sorted(dataframe["lang"].unique(), key=lambda key: lang2name.get(key, key)), | |
| format_func=lambda key: lang2name.get(key, key), | |
| index=0, | |
| ) | |
| lang_df = dataframe[dataframe.lang == lang] | |
| sorted_datasets = sort_datasets(lang_df["dataset"].unique()) | |
| lang_name = lang2name[lang] if lang in lang2name else "" | |
| num_models = len(lang_df["model_id"].unique()) | |
| num_datasets = len(lang_df["dataset"].unique()) | |
| text = f""" | |
| For the `{lang}` ({lang_name}) language, there are currently `{num_models}` model(s) | |
| trained on `{num_datasets}` dataset(s) available for `automatic-speech-recognition`. | |
| """ | |
| st.markdown(text) | |
| st.sidebar.markdown(""" | |
| Choose the dataset that is most relevant to your task and select it from the dropdown below: | |
| """) | |
| dataset = st.sidebar.selectbox( | |
| "Dataset", | |
| sorted_datasets, | |
| index=0, | |
| ) | |
| dataset_df = lang_df[lang_df.dataset == dataset] | |
| text = generate_dataset_info(sorted_datasets) | |
| st.sidebar.markdown(text) | |
| # sort by WER or CER depending on the language | |
| metric_col = "cer" if lang in cer_langs else "wer" | |
| if dataset_df["config"].nunique() > 1: | |
| # if there are more than one dataset config | |
| dataset_df = dataset_df[["model_id", "config", metric_col]] | |
| dataset_df = dataset_df.pivot_table(index=['model_id'], columns=["config"], values=[metric_col]) | |
| dataset_df = dataset_df.reset_index(level=0) | |
| else: | |
| dataset_df = dataset_df[["model_id", metric_col]] | |
| dataset_df.sort_values(dataset_df.columns[-1], inplace=True) | |
| dataset_df = dataset_df.fillna("") | |
| dataset_df.rename( | |
| columns={ | |
| "model_id": "Model", | |
| "wer": "WER (lower is better)", | |
| "cer": "CER (lower is better)", | |
| }, | |
| inplace=True, | |
| ) | |
| st.markdown( | |
| "Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it." | |
| ) | |
| # display the model ranks | |
| dataset_df = dataset_df.reset_index(drop=True) | |
| dataset_df.index += 1 | |
| # turn the model ids into clickable links | |
| dataset_df["Model"] = dataset_df["Model"].apply(make_clickable) | |
| table_html = dataset_df.to_html(escape=False) | |
| table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers | |
| st.write(table_html, unsafe_allow_html=True) | |
| if lang in cer_langs: | |
| st.markdown( | |
| "---\n\* **CER** is [Char Error Rate](https://huggingface.co/metrics/cer)" | |
| ) | |
| else: | |
| st.markdown( | |
| "---\n\* **WER** is [Word Error Rate](https://huggingface.co/metrics/wer)" | |
| ) | |
| st.markdown( | |
| "Want to beat the Leaderboard? Don't see your speech recognition model show up here? " | |
| "Simply add the `hf-asr-leaderboard` tag to your model card alongside your evaluation metrics. " | |
| "Try our [Metrics Editor](https://huggingface.co/spaces/huggingface/speech-bench-metrics-editor) to get started!" | |
| ) | |