Spaces:
Runtime error
Runtime error
Commit
·
4809033
1
Parent(s):
fa81556
new filter on word repetition ratio
Browse files- app.py +107 -26
- en_examples_with_stats.json +2 -2
- explanation_filtering_pipeline.pdf +0 -0
- zh_examples_with_stats.json +2 -2
app.py
CHANGED
|
@@ -156,17 +156,17 @@ class Visualization_for_lang:
|
|
| 156 |
|
| 157 |
conds["number_words"] = [cond_1, cond_2]
|
| 158 |
|
| 159 |
-
if "
|
| 160 |
-
with st.sidebar.expander("
|
| 161 |
val_repetitions_lengths = list(
|
| 162 |
-
self.docs["
|
| 163 |
)
|
| 164 |
default_index = (
|
| 165 |
val_repetitions_lengths.index("10")
|
| 166 |
if "10" in val_repetitions_lengths
|
| 167 |
else 0
|
| 168 |
)
|
| 169 |
-
label_selectbox = "Length of
|
| 170 |
repetitions_length = st.selectbox(
|
| 171 |
label=label_selectbox,
|
| 172 |
options=val_repetitions_lengths,
|
|
@@ -175,25 +175,27 @@ class Visualization_for_lang:
|
|
| 175 |
st.caption(
|
| 176 |
"Choosing a higher or lower number does not mean that the filtering "
|
| 177 |
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
|
| 178 |
-
"tends to associate a high
|
| 179 |
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
| 180 |
-
"not want to discard such documents."
|
|
|
|
|
|
|
| 181 |
)
|
| 182 |
-
self.docs["
|
| 183 |
-
"
|
| 184 |
]
|
| 185 |
-
for i in range(len(self.docs["
|
| 186 |
-
self.docs["
|
| 187 |
-
"
|
| 188 |
].iloc[i][repetitions_length]
|
| 189 |
|
| 190 |
-
cutoff_def = "If the
|
| 191 |
-
|
| 192 |
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 193 |
)
|
| 194 |
new_key = (
|
| 195 |
-
"
|
| 196 |
-
|
| 197 |
True,
|
| 198 |
repetitions_length,
|
| 199 |
)
|
|
@@ -201,7 +203,55 @@ class Visualization_for_lang:
|
|
| 201 |
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 202 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 203 |
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 204 |
-
conds["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
if "special_characters_ratio" in columns:
|
| 207 |
with st.sidebar.expander("Special characters ratio"):
|
|
@@ -361,12 +411,25 @@ class Visualization_for_lang:
|
|
| 361 |
"docs",
|
| 362 |
)
|
| 363 |
|
| 364 |
-
if "
|
| 365 |
-
cond_filter = np.invert(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
Visualization_for_lang.display_dataset(
|
| 367 |
self.docs,
|
| 368 |
cond_filter,
|
| 369 |
-
"Discarded documents for the filter on the
|
| 370 |
"docs",
|
| 371 |
)
|
| 372 |
|
|
@@ -606,13 +669,31 @@ class Visualization_for_lang:
|
|
| 606 |
if is_doc_discarded(key, len(words)):
|
| 607 |
is_discarded = True
|
| 608 |
|
| 609 |
-
elif key[0] == "
|
| 610 |
-
|
| 611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
)
|
| 613 |
-
|
| 614 |
-
st.markdown(f"
|
| 615 |
-
if is_doc_discarded(key,
|
| 616 |
is_discarded = True
|
| 617 |
|
| 618 |
elif key[0] == "special_characters_ratio":
|
|
@@ -773,7 +854,7 @@ class Visualization:
|
|
| 773 |
|
| 774 |
def visualization(self):
|
| 775 |
self.preamble()
|
| 776 |
-
|
| 777 |
self.choose_lang()
|
| 778 |
|
| 779 |
|
|
|
|
| 156 |
|
| 157 |
conds["number_words"] = [cond_1, cond_2]
|
| 158 |
|
| 159 |
+
if "character_repetition_ratio" in columns:
|
| 160 |
+
with st.sidebar.expander("Character repetition ratio"):
|
| 161 |
val_repetitions_lengths = list(
|
| 162 |
+
self.docs["character_repetition_ratio"].iloc[0].keys()
|
| 163 |
)
|
| 164 |
default_index = (
|
| 165 |
val_repetitions_lengths.index("10")
|
| 166 |
if "10" in val_repetitions_lengths
|
| 167 |
else 0
|
| 168 |
)
|
| 169 |
+
label_selectbox = "Length of repetitions in characters (that will influence the character repetition ratio)."
|
| 170 |
repetitions_length = st.selectbox(
|
| 171 |
label=label_selectbox,
|
| 172 |
options=val_repetitions_lengths,
|
|
|
|
| 175 |
st.caption(
|
| 176 |
"Choosing a higher or lower number does not mean that the filtering "
|
| 177 |
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
|
| 178 |
+
"tends to associate a high character repetition ratio to very long documents (like book chapters), but with "
|
| 179 |
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
| 180 |
+
"not want to discard such documents. It is generally better to increase this number, so that false "
|
| 181 |
+
"positives are very short documents (which we want to delete anyway) rather than long ones. However, "
|
| 182 |
+
"a low number can be useful for Chinese, where a character can designate a whole word."
|
| 183 |
)
|
| 184 |
+
self.docs["character_repetition_ratio"] = self.docs_checkpoint[
|
| 185 |
+
"character_repetition_ratio"
|
| 186 |
]
|
| 187 |
+
for i in range(len(self.docs["character_repetition_ratio"])):
|
| 188 |
+
self.docs["character_repetition_ratio"].iloc[i] = self.docs[
|
| 189 |
+
"character_repetition_ratio"
|
| 190 |
].iloc[i][repetitions_length]
|
| 191 |
|
| 192 |
+
cutoff_def = "If the character repetition ratio of a document is higher than this number, the document is removed."
|
| 193 |
+
cutoff_character_repetition_ratio = st.slider(
|
| 194 |
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 195 |
)
|
| 196 |
new_key = (
|
| 197 |
+
"character_repetition_ratio",
|
| 198 |
+
cutoff_character_repetition_ratio,
|
| 199 |
True,
|
| 200 |
repetitions_length,
|
| 201 |
)
|
|
|
|
| 203 |
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 204 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 205 |
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 206 |
+
conds["character_repetition_ratio"] = [cond]
|
| 207 |
+
|
| 208 |
+
if "word_repetition_ratio" in columns:
|
| 209 |
+
with st.sidebar.expander("Word repetition ratio"):
|
| 210 |
+
val_repetitions_lengths = list(
|
| 211 |
+
self.docs["word_repetition_ratio"].iloc[0].keys()
|
| 212 |
+
)
|
| 213 |
+
default_index = (
|
| 214 |
+
val_repetitions_lengths.index("5")
|
| 215 |
+
if "5" in val_repetitions_lengths
|
| 216 |
+
else 0
|
| 217 |
+
)
|
| 218 |
+
label_selectbox = "Length of repetitions in words (that will influence the word repetition ratio)."
|
| 219 |
+
repetitions_length = st.selectbox(
|
| 220 |
+
label=label_selectbox,
|
| 221 |
+
options=val_repetitions_lengths,
|
| 222 |
+
index=default_index,
|
| 223 |
+
)
|
| 224 |
+
st.caption(
|
| 225 |
+
"Choosing a higher or lower number does not mean that the filtering "
|
| 226 |
+
"is stronger or weaker. Be careful, choosing a low number (like 3) could "
|
| 227 |
+
"tend to associate a high word repetition ratio to very long documents (like book chapters), but with "
|
| 228 |
+
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
| 229 |
+
"not want to discard such documents. It is generally better to increase a bit this number, so that false "
|
| 230 |
+
"positives are very short documents (which we want to delete anyway) rather than long ones."
|
| 231 |
+
)
|
| 232 |
+
self.docs["word_repetition_ratio"] = self.docs_checkpoint[
|
| 233 |
+
"word_repetition_ratio"
|
| 234 |
+
]
|
| 235 |
+
for i in range(len(self.docs["word_repetition_ratio"])):
|
| 236 |
+
self.docs["word_repetition_ratio"].iloc[i] = self.docs[
|
| 237 |
+
"word_repetition_ratio"
|
| 238 |
+
].iloc[i][repetitions_length]
|
| 239 |
+
|
| 240 |
+
cutoff_def = "If the word repetition ratio of a document is higher than this number, the document is removed."
|
| 241 |
+
cutoff_word_repetition_ratio = st.slider(
|
| 242 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 243 |
+
)
|
| 244 |
+
new_key = (
|
| 245 |
+
"word_repetition_ratio",
|
| 246 |
+
cutoff_word_repetition_ratio,
|
| 247 |
+
True,
|
| 248 |
+
repetitions_length,
|
| 249 |
+
)
|
| 250 |
+
keys.append(new_key)
|
| 251 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 252 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 253 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 254 |
+
conds["word_repetition_ratio"] = [cond]
|
| 255 |
|
| 256 |
if "special_characters_ratio" in columns:
|
| 257 |
with st.sidebar.expander("Special characters ratio"):
|
|
|
|
| 411 |
"docs",
|
| 412 |
)
|
| 413 |
|
| 414 |
+
if "character_repetition_ratio" in columns:
|
| 415 |
+
cond_filter = np.invert(
|
| 416 |
+
np.all(conds["character_repetition_ratio"], axis=0)
|
| 417 |
+
)
|
| 418 |
+
Visualization_for_lang.display_dataset(
|
| 419 |
+
self.docs,
|
| 420 |
+
cond_filter,
|
| 421 |
+
"Discarded documents for the filter on the character repetition ratio",
|
| 422 |
+
"docs",
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
if "word_repetition_ratio" in columns:
|
| 426 |
+
cond_filter = np.invert(
|
| 427 |
+
np.all(conds["word_repetition_ratio"], axis=0)
|
| 428 |
+
)
|
| 429 |
Visualization_for_lang.display_dataset(
|
| 430 |
self.docs,
|
| 431 |
cond_filter,
|
| 432 |
+
"Discarded documents for the filter on the word repetition ratio",
|
| 433 |
"docs",
|
| 434 |
)
|
| 435 |
|
|
|
|
| 669 |
if is_doc_discarded(key, len(words)):
|
| 670 |
is_discarded = True
|
| 671 |
|
| 672 |
+
elif key[0] == "character_repetition_ratio":
|
| 673 |
+
character_repetition_ratio = (
|
| 674 |
+
Filtering.compute_character_repetition_ratio(
|
| 675 |
+
personal_doc, int(key[3])
|
| 676 |
+
)
|
| 677 |
+
)
|
| 678 |
+
character_repetition_ratio = round(
|
| 679 |
+
character_repetition_ratio, 3
|
| 680 |
+
)
|
| 681 |
+
st.markdown(
|
| 682 |
+
f"Character repetition ratio: {character_repetition_ratio}"
|
| 683 |
+
)
|
| 684 |
+
if is_doc_discarded(key, character_repetition_ratio):
|
| 685 |
+
is_discarded = True
|
| 686 |
+
|
| 687 |
+
elif key[0] == "word_repetition_ratio":
|
| 688 |
+
word_repetition_ratio = Filtering.compute_word_repetition_ratio(
|
| 689 |
+
personal_doc,
|
| 690 |
+
self.sentencepiece_model_tok,
|
| 691 |
+
self.param["strip_characters"],
|
| 692 |
+
int(key[3]),
|
| 693 |
)
|
| 694 |
+
word_repetition_ratio = round(word_repetition_ratio, 3)
|
| 695 |
+
st.markdown(f"Word repetition ratio: {word_repetition_ratio}")
|
| 696 |
+
if is_doc_discarded(key, word_repetition_ratio):
|
| 697 |
is_discarded = True
|
| 698 |
|
| 699 |
elif key[0] == "special_characters_ratio":
|
|
|
|
| 854 |
|
| 855 |
def visualization(self):
|
| 856 |
self.preamble()
|
| 857 |
+
self.warning_preamble()
|
| 858 |
self.choose_lang()
|
| 859 |
|
| 860 |
|
en_examples_with_stats.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac12d82e24642fd0b1d4f6c5b8fbe1edb42dc15a38185ccc8ec95ac0fe687bc2
|
| 3 |
+
size 241407829
|
explanation_filtering_pipeline.pdf
CHANGED
|
Binary files a/explanation_filtering_pipeline.pdf and b/explanation_filtering_pipeline.pdf differ
|
|
|
zh_examples_with_stats.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85f70e561c971b468ba69963841b73e6a6da0a230f19f191234701e926688feb
|
| 3 |
+
size 63554172
|