Spaces:
Runtime error
Runtime error
Commit
·
5d485e5
1
Parent(s):
f217a73
display distributions in sidebar and filtering parameters in expanders
Browse files
app.py
CHANGED
|
@@ -113,6 +113,19 @@ class Visualization:
|
|
| 113 |
def set_title(self):
|
| 114 |
st.title(f"{self.num_docs} {self.lang} documents with their stats.")
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
def filtering_of_docs(self):
|
| 117 |
st.sidebar.subheader("Parameters of the filtering on documents")
|
| 118 |
|
|
@@ -127,135 +140,148 @@ class Visualization:
|
|
| 127 |
return self.docs[key] >= cutoff
|
| 128 |
|
| 129 |
def print_discared_by_cond(cond):
|
| 130 |
-
st.
|
| 131 |
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
| 132 |
)
|
| 133 |
-
st.sidebar.caption("---------")
|
| 134 |
|
| 135 |
if "number_words" in columns:
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
cutoff_def
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
|
| 156 |
|
| 157 |
if "repetitions_ratio" in columns:
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
self.docs["repetitions_ratio"]
|
| 182 |
-
"repetitions_ratio"
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
| 199 |
|
| 200 |
if "special_characters_ratio" in columns:
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
| 214 |
|
| 215 |
if "stopwords_ratio" in columns:
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
| 225 |
|
| 226 |
if "flagged_words_ratio" in columns:
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
| 236 |
|
| 237 |
if "lang_id_score" in columns:
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
| 247 |
|
| 248 |
if "perplexity_score" in columns:
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
| 259 |
|
| 260 |
return keys, conds
|
| 261 |
|
|
@@ -344,21 +370,23 @@ class Visualization:
|
|
| 344 |
if not (self.words is None):
|
| 345 |
st.sidebar.subheader("Parameter of the filtering on words")
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
|
| 363 |
st.header("Filtering on words")
|
| 364 |
|
|
@@ -386,35 +414,13 @@ class Visualization:
|
|
| 386 |
st.dataframe(retained_words)
|
| 387 |
|
| 388 |
def download_parameters(self):
|
|
|
|
| 389 |
btn = st.sidebar.download_button(
|
| 390 |
label="Download current parameters as json",
|
| 391 |
data=json.dumps(self.parameters),
|
| 392 |
file_name=f"parameters_{self.lang_dataset_id}.json",
|
| 393 |
)
|
| 394 |
|
| 395 |
-
def plot_distributions_filtering_parameters(self):
|
| 396 |
-
st.header("Distributions of the filtering parameters")
|
| 397 |
-
|
| 398 |
-
display_distributions = st.checkbox("Display distributions")
|
| 399 |
-
|
| 400 |
-
if display_distributions:
|
| 401 |
-
|
| 402 |
-
def plot_hist(dataframe, key, num_bins=50):
|
| 403 |
-
st.subheader(" ".join(key.split("_")))
|
| 404 |
-
hist_values = dataframe[key].values
|
| 405 |
-
max_range = np.max(hist_values)
|
| 406 |
-
hist_values = np.histogram(
|
| 407 |
-
hist_values, bins=num_bins, range=(0, max_range)
|
| 408 |
-
)[0]
|
| 409 |
-
st.bar_chart(hist_values)
|
| 410 |
-
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
| 411 |
-
|
| 412 |
-
for key in list({el[0]: None for el in self.keys}):
|
| 413 |
-
plot_hist(self.docs, key)
|
| 414 |
-
|
| 415 |
-
if not (self.words is None):
|
| 416 |
-
plot_hist(self.words, "len_word")
|
| 417 |
-
|
| 418 |
def plot_zipf_law(self):
|
| 419 |
if not (self.words is None):
|
| 420 |
st.header("Zipf's Law")
|
|
@@ -570,7 +576,6 @@ class Visualization:
|
|
| 570 |
self.filtering_of_docs()
|
| 571 |
self.filtering_of_words()
|
| 572 |
self.download_parameters()
|
| 573 |
-
self.plot_distributions_filtering_parameters()
|
| 574 |
# self.plot_zipf_law()
|
| 575 |
self.analyse_personal_doc()
|
| 576 |
self.download_data()
|
|
|
|
| 113 |
def set_title(self):
|
| 114 |
st.title(f"{self.num_docs} {self.lang} documents with their stats.")
|
| 115 |
|
| 116 |
+
@staticmethod
|
| 117 |
+
def plot_hist(dataframe, key, num_bins=50):
|
| 118 |
+
checkbox = st.checkbox("Diplay distribution", value=True, key=f"display_distribution_{key[0]}")
|
| 119 |
+
if checkbox:
|
| 120 |
+
fig, ax = plt.subplots()
|
| 121 |
+
val = dataframe[key[0]].values
|
| 122 |
+
if np.median(val) != 0:
|
| 123 |
+
val = val[abs(val - np.median(val)) < 9 * np.median(np.absolute(val - np.median(val)))]
|
| 124 |
+
ax.hist(val, bins=num_bins, density=True)
|
| 125 |
+
ax.set_title(" ".join(key[0].split("_")))
|
| 126 |
+
ax.axvline(x=key[1], color='r', linestyle='dashed')
|
| 127 |
+
st.pyplot(fig)
|
| 128 |
+
|
| 129 |
def filtering_of_docs(self):
|
| 130 |
st.sidebar.subheader("Parameters of the filtering on documents")
|
| 131 |
|
|
|
|
| 140 |
return self.docs[key] >= cutoff
|
| 141 |
|
| 142 |
def print_discared_by_cond(cond):
|
| 143 |
+
st.caption(
|
| 144 |
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
| 145 |
)
|
|
|
|
| 146 |
|
| 147 |
if "number_words" in columns:
|
| 148 |
+
with st.sidebar.expander("Number of words"):
|
| 149 |
+
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
| 150 |
+
max_nb_words = int(np.max(self.docs["number_words"])) + 1
|
| 151 |
+
cutoff_min_number_words = st.slider(
|
| 152 |
+
cutoff_def, 0, min(max_nb_words, 500), 0
|
| 153 |
+
)
|
| 154 |
+
new_key = ("number_words", cutoff_min_number_words, False)
|
| 155 |
+
keys.append(new_key)
|
| 156 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 157 |
+
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 158 |
+
print_discared_by_cond(cond_1)
|
| 159 |
+
|
| 160 |
+
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
| 161 |
+
cutoff_max_number_words = st.slider(
|
| 162 |
+
cutoff_def, 0, max_nb_words, max_nb_words
|
| 163 |
+
)
|
| 164 |
+
new_key = ("number_words", cutoff_max_number_words, True)
|
| 165 |
+
keys.append(new_key)
|
| 166 |
+
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 167 |
+
print_discared_by_cond(cond_2)
|
| 168 |
|
| 169 |
+
conds["number_words"] = [cond_1, cond_2]
|
| 170 |
|
| 171 |
if "repetitions_ratio" in columns:
|
| 172 |
+
with st.sidebar.expander("Repetitions ratio"):
|
| 173 |
+
val_repetitions_lengths = list(
|
| 174 |
+
self.docs["repetitions_ratio"].iloc[0].keys()
|
| 175 |
+
)
|
| 176 |
+
default_index = (
|
| 177 |
+
val_repetitions_lengths.index("10")
|
| 178 |
+
if "10" in val_repetitions_lengths
|
| 179 |
+
else 0
|
| 180 |
+
)
|
| 181 |
+
label_selectbox = "Length of the repetitions (that will determine the repetitions ratio)."
|
| 182 |
+
repetitions_length = st.selectbox(
|
| 183 |
+
label=label_selectbox,
|
| 184 |
+
options=val_repetitions_lengths,
|
| 185 |
+
index=default_index,
|
| 186 |
+
)
|
| 187 |
+
st.caption(
|
| 188 |
+
"Choosing a higher or lower number does not mean that the filtering "
|
| 189 |
+
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
|
| 190 |
+
"tends to associate a high repetitions ratio to very long documents (like book chapters), but with "
|
| 191 |
+
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
| 192 |
+
"not want to discard such documents."
|
| 193 |
+
)
|
| 194 |
+
self.docs = self.docs_checkpoint
|
| 195 |
+
for i in range(len(self.docs["repetitions_ratio"])):
|
| 196 |
+
self.docs["repetitions_ratio"].iloc[i] = self.docs[
|
| 197 |
+
"repetitions_ratio"
|
| 198 |
+
].iloc[i][repetitions_length]
|
| 199 |
+
|
| 200 |
+
cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed."
|
| 201 |
+
cutoff_repetitions_ratio = st.slider(
|
| 202 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 203 |
+
)
|
| 204 |
+
new_key = (
|
| 205 |
+
"repetitions_ratio",
|
| 206 |
+
cutoff_repetitions_ratio,
|
| 207 |
+
True,
|
| 208 |
+
repetitions_length,
|
| 209 |
+
)
|
| 210 |
+
keys.append(new_key)
|
| 211 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 212 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 213 |
+
print_discared_by_cond(cond)
|
| 214 |
+
conds["repetitions_ratio"] = [cond]
|
| 215 |
|
| 216 |
if "special_characters_ratio" in columns:
|
| 217 |
+
with st.sidebar.expander("Special characters ratio"):
|
| 218 |
+
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
|
| 219 |
+
cutoff_special_characters_ratio = st.slider(
|
| 220 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 221 |
+
)
|
| 222 |
+
new_key = (
|
| 223 |
+
"special_characters_ratio",
|
| 224 |
+
cutoff_special_characters_ratio,
|
| 225 |
+
True,
|
| 226 |
+
)
|
| 227 |
+
keys.append(new_key)
|
| 228 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 229 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 230 |
+
print_discared_by_cond(cond)
|
| 231 |
+
conds["special_characters_ratio"] = [cond]
|
| 232 |
|
| 233 |
if "stopwords_ratio" in columns:
|
| 234 |
+
with st.sidebar.expander("Stop words ratio"):
|
| 235 |
+
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
| 236 |
+
cutoff_stopwords_ratio = st.slider(
|
| 237 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
| 238 |
+
)
|
| 239 |
+
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
| 240 |
+
keys.append(new_key)
|
| 241 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 242 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 243 |
+
print_discared_by_cond(cond)
|
| 244 |
+
conds["stopwords_ratio"] = [cond]
|
| 245 |
|
| 246 |
if "flagged_words_ratio" in columns:
|
| 247 |
+
with st.sidebar.expander("Flagged words ratio"):
|
| 248 |
+
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
| 249 |
+
cutoff_flagged_words_ratio = st.slider(
|
| 250 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 251 |
+
)
|
| 252 |
+
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
| 253 |
+
keys.append(new_key)
|
| 254 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 255 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 256 |
+
print_discared_by_cond(cond)
|
| 257 |
+
conds["flagged_words_ratio"] = [cond]
|
| 258 |
|
| 259 |
if "lang_id_score" in columns:
|
| 260 |
+
with st.sidebar.expander("Language ID confidence score"):
|
| 261 |
+
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
| 262 |
+
cutoff_lang_id_score = st.slider(
|
| 263 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
| 264 |
+
)
|
| 265 |
+
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
| 266 |
+
keys.append(new_key)
|
| 267 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 268 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 269 |
+
print_discared_by_cond(cond)
|
| 270 |
+
conds["lang_id_score"] = [cond]
|
| 271 |
|
| 272 |
if "perplexity_score" in columns:
|
| 273 |
+
with st.sidebar.expander("Perplexity score"):
|
| 274 |
+
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
| 275 |
+
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
|
| 276 |
+
cutoff_perplexity_score = st.slider(
|
| 277 |
+
cutoff_def, 0, max_pp, max_pp
|
| 278 |
+
)
|
| 279 |
+
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 280 |
+
keys.append(new_key)
|
| 281 |
+
Visualization.plot_hist(self.docs, new_key)
|
| 282 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 283 |
+
print_discared_by_cond(cond)
|
| 284 |
+
conds["perplexity_score"] = [cond]
|
| 285 |
|
| 286 |
return keys, conds
|
| 287 |
|
|
|
|
| 370 |
if not (self.words is None):
|
| 371 |
st.sidebar.subheader("Parameter of the filtering on words")
|
| 372 |
|
| 373 |
+
with st.sidebar.expander("Length of words"):
|
| 374 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
| 375 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
| 376 |
+
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
|
| 377 |
+
new_key = ("len_word", cutoff_word, True)
|
| 378 |
+
self.parameters.append(new_key)
|
| 379 |
+
Visualization.plot_hist(self.words, new_key)
|
| 380 |
+
|
| 381 |
+
with st.sidebar.expander("Words with incorrect substrings"):
|
| 382 |
+
incorrect_substrings = st.checkbox(
|
| 383 |
+
"Remove words with incorrect substrings."
|
| 384 |
+
)
|
| 385 |
+
self.parameters.append(("incorrect_substrings", incorrect_substrings))
|
| 386 |
|
| 387 |
+
cond_words = self.words["len_word"] <= cutoff_word
|
| 388 |
+
if incorrect_substrings:
|
| 389 |
+
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
|
| 390 |
|
| 391 |
st.header("Filtering on words")
|
| 392 |
|
|
|
|
| 414 |
st.dataframe(retained_words)
|
| 415 |
|
| 416 |
def download_parameters(self):
|
| 417 |
+
st.sidebar.subheader("Download parameters")
|
| 418 |
btn = st.sidebar.download_button(
|
| 419 |
label="Download current parameters as json",
|
| 420 |
data=json.dumps(self.parameters),
|
| 421 |
file_name=f"parameters_{self.lang_dataset_id}.json",
|
| 422 |
)
|
| 423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
def plot_zipf_law(self):
|
| 425 |
if not (self.words is None):
|
| 426 |
st.header("Zipf's Law")
|
|
|
|
| 576 |
self.filtering_of_docs()
|
| 577 |
self.filtering_of_words()
|
| 578 |
self.download_parameters()
|
|
|
|
| 579 |
# self.plot_zipf_law()
|
| 580 |
self.analyse_personal_doc()
|
| 581 |
self.download_data()
|