Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import streamlit as st | |
| from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from llama_index.legacy.callbacks import CallbackManager | |
| from llama_index.llms.openai_like import OpenAILike | |
| # Create an instance of CallbackManager | |
| callback_manager = CallbackManager() | |
| api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/" | |
| model = "internlm2.5-latest" | |
| api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI1MDE5NTQyOSIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMDIxOTcxMSwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTU3NzExODg5NjciLCJ1dWlkIjoiOWM5ZDNkZWQtNDI3ZS00Nzk0LWFlMjYtYjQ5YTQ1Yjk5MDk0IiwiZW1haWwiOiIiLCJleHAiOjE3NDU3NzE3MTF9.Al9Sff9zh5KdUkjqtHyeqSWH0F_kVaV9C-TJJLzhc4LAtt_wULDpBYBnjjrIIjfQNJj3fvr-YnAFKq3d-NCBqg" | |
| # api_base_url = "https://api.siliconflow.cn/v1" | |
| # model = "internlm/internlm2_5-7b-chat" | |
| # api_key = "请填写 API Key" | |
| llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager) | |
| st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗") | |
| st.title("llama_index_demo") | |
| # 初始化模型 | |
| def init_models(): | |
| embed_model = HuggingFaceEmbedding( | |
| model_name="model/paraphrase-multilingual-MiniLM-L12-v2" | |
| ) | |
| Settings.embed_model = embed_model | |
| #用初始化llm | |
| Settings.llm = llm | |
| documents = SimpleDirectoryReader("data").load_data() | |
| index = VectorStoreIndex.from_documents(documents) | |
| query_engine = index.as_query_engine() | |
| return query_engine | |
| # 检查是否需要初始化模型 | |
| if 'query_engine' not in st.session_state: | |
| st.session_state['query_engine'] = init_models() | |
| def greet2(question): | |
| response = st.session_state['query_engine'].query(question) | |
| return response | |
| # Store LLM generated responses | |
| if "messages" not in st.session_state.keys(): | |
| st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] | |
| # Display or clear chat messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| def clear_chat_history(): | |
| st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] | |
| st.sidebar.button('Clear Chat History', on_click=clear_chat_history) | |
| # Function for generating LLaMA2 response | |
| def generate_llama_index_response(prompt_input): | |
| return greet2(prompt_input) | |
| # User-provided prompt | |
| if prompt := st.chat_input(): | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user"): | |
| st.write(prompt) | |
| # Gegenerate_llama_index_response last message is not from assistant | |
| if st.session_state.messages[-1]["role"] != "assistant": | |
| with st.chat_message("assistant"): | |
| with st.spinner("Thinking..."): | |
| response = generate_llama_index_response(prompt) | |
| placeholder = st.empty() | |
| placeholder.markdown(response) | |
| message = {"role": "assistant", "content": response} | |
| st.session_state.messages.append(message) |