Commit
·
a9235bb
1
Parent(s):
ff0d0ea
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,6 +18,8 @@ from scripts.util.detection.nsfw_and_watermark_dectection import \
|
|
| 18 |
from sgm.inference.helpers import embed_watermark
|
| 19 |
from sgm.util import default, instantiate_from_config
|
| 20 |
|
|
|
|
|
|
|
| 21 |
from huggingface_hub import hf_hub_download
|
| 22 |
|
| 23 |
hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
|
@@ -73,6 +75,7 @@ def sample(
|
|
| 73 |
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 74 |
device: str = "cuda",
|
| 75 |
output_folder: str = "outputs",
|
|
|
|
| 76 |
):
|
| 77 |
"""
|
| 78 |
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
|
@@ -256,8 +259,6 @@ def get_batch(keys, value_dict, N, T, device):
|
|
| 256 |
batch_uc[key] = torch.clone(batch[key])
|
| 257 |
return batch, batch_uc
|
| 258 |
|
| 259 |
-
import gradio as gr
|
| 260 |
-
import uuid
|
| 261 |
def resize_image(image_path, output_size=(1024, 576)):
|
| 262 |
image = Image.open(image_path)
|
| 263 |
# Calculate aspect ratios
|
|
|
|
| 18 |
from sgm.inference.helpers import embed_watermark
|
| 19 |
from sgm.util import default, instantiate_from_config
|
| 20 |
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import uuid
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
|
|
|
| 75 |
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 76 |
device: str = "cuda",
|
| 77 |
output_folder: str = "outputs",
|
| 78 |
+
progress=gr.Progress(track_tqdm=True)
|
| 79 |
):
|
| 80 |
"""
|
| 81 |
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
|
|
|
| 259 |
batch_uc[key] = torch.clone(batch[key])
|
| 260 |
return batch, batch_uc
|
| 261 |
|
|
|
|
|
|
|
| 262 |
def resize_image(image_path, output_size=(1024, 576)):
|
| 263 |
image = Image.open(image_path)
|
| 264 |
# Calculate aspect ratios
|