Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from .attention import Attention | |
| class BasicTransformerBlock(nn.Module): | |
| r""" | |
| A basic Transformer block. | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| num_embeds_ada_norm (: | |
| obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
| attention_bias (: | |
| obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
| only_cross_attention (`bool`, *optional*): | |
| Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
| double_self_attention (`bool`, *optional*): | |
| Whether to use two self-attention layers. In this case no cross attention layers are used. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| attention_type (`str`, *optional*, defaults to `"default"`): | |
| The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| norm_type: str = "layer_norm", | |
| final_dropout: bool = False, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| assert norm_type == "layer_norm" | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| upcast_attention=upcast_attention, | |
| ) | |
| # 2. Cross-Attn | |
| if cross_attention_dim is not None or double_self_attention: | |
| # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
| # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
| # the second cross attention block. | |
| self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim | |
| if not double_self_attention | |
| else None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) # is self-attn if encoder_hidden_states is none | |
| else: | |
| self.norm2 = None | |
| self.attn2 = None | |
| # 3. Feed-forward | |
| self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| ) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| norm_hidden_states = self.norm1(hidden_states) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states | |
| if self.only_cross_attention | |
| else None, | |
| attention_mask=attention_mask, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 3. Cross-Attention | |
| if self.attn2 is not None: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 4. Feed-forward | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self._chunk_size is not None: | |
| # "feed_forward_chunk_size" can be used to save memory | |
| if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
| raise ValueError( | |
| f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
| ) | |
| num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
| ff_output = torch.cat( | |
| [ | |
| self.ff(hid_slice) | |
| for hid_slice in norm_hidden_states.chunk( | |
| num_chunks, dim=self._chunk_dim | |
| ) | |
| ], | |
| dim=self._chunk_dim, | |
| ) | |
| else: | |
| ff_output = self.ff(norm_hidden_states) | |
| hidden_states = ff_output + hidden_states | |
| return hidden_states | |
| class FeedForward(nn.Module): | |
| r""" | |
| A feed-forward layer. | |
| Parameters: | |
| dim (`int`): The number of channels in the input. | |
| dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
| mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| dim_out: Optional[int] = None, | |
| mult: int = 4, | |
| dropout: float = 0.0, | |
| activation_fn: str = "geglu", | |
| final_dropout: bool = False, | |
| ): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = dim_out if dim_out is not None else dim | |
| linear_cls = nn.Linear | |
| if activation_fn == "gelu": | |
| act_fn = GELU(dim, inner_dim) | |
| if activation_fn == "gelu-approximate": | |
| act_fn = GELU(dim, inner_dim, approximate="tanh") | |
| elif activation_fn == "geglu": | |
| act_fn = GEGLU(dim, inner_dim) | |
| elif activation_fn == "geglu-approximate": | |
| act_fn = ApproximateGELU(dim, inner_dim) | |
| self.net = nn.ModuleList([]) | |
| # project in | |
| self.net.append(act_fn) | |
| # project dropout | |
| self.net.append(nn.Dropout(dropout)) | |
| # project out | |
| self.net.append(linear_cls(inner_dim, dim_out)) | |
| # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
| if final_dropout: | |
| self.net.append(nn.Dropout(dropout)) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| for module in self.net: | |
| hidden_states = module(hidden_states) | |
| return hidden_states | |
| class GELU(nn.Module): | |
| r""" | |
| GELU activation function with tanh approximation support with `approximate="tanh"`. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out) | |
| self.approximate = approximate | |
| def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
| if gate.device.type != "mps": | |
| return F.gelu(gate, approximate=self.approximate) | |
| # mps: gelu is not implemented for float16 | |
| return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to( | |
| dtype=gate.dtype | |
| ) | |
| def forward(self, hidden_states): | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states = self.gelu(hidden_states) | |
| return hidden_states | |
| class GEGLU(nn.Module): | |
| r""" | |
| A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int): | |
| super().__init__() | |
| linear_cls = nn.Linear | |
| self.proj = linear_cls(dim_in, dim_out * 2) | |
| def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
| if gate.device.type != "mps": | |
| return F.gelu(gate) | |
| # mps: gelu is not implemented for float16 | |
| return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
| def forward(self, hidden_states, scale: float = 1.0): | |
| args = () | |
| hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1) | |
| return hidden_states * self.gelu(gate) | |
| class ApproximateGELU(nn.Module): | |
| r""" | |
| The approximate form of Gaussian Error Linear Unit (GELU). For more details, see section 2: | |
| https://arxiv.org/abs/1606.08415. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.proj(x) | |
| return x * torch.sigmoid(1.702 * x) | |