Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022 Idiap Research Institute, http://www.idiap.ch/ | |
| # Written by Alireza Mohammadshahi <alireza.mohammadshahi@idiap.ch> | |
| # This is a modified version of https://github.com/huggingface/transformers/blob/main/src/transformers/models/m2m_100/tokenization_m2m_100.py | |
| # which owns by Fariseq Authors and The HuggingFace Inc. team. | |
| # | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tokenization classes for SMALL100.""" | |
| import json | |
| import os | |
| from pathlib import Path | |
| from shutil import copyfile | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import sentencepiece | |
| from transformers.tokenization_utils import BatchEncoding, PreTrainedTokenizer | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| SPIECE_UNDERLINE = "▁" | |
| VOCAB_FILES_NAMES = { | |
| "vocab_file": "vocab.json", | |
| "spm_file": "sentencepiece.bpe.model", | |
| "tokenizer_config_file": "tokenizer_config.json", | |
| } | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/vocab.json", | |
| }, | |
| "spm_file": { | |
| "alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/sentencepiece.bpe.model", | |
| }, | |
| "tokenizer_config_file": { | |
| "alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/tokenizer_config.json", | |
| }, | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| "alirezamsh/small100": 1024, | |
| } | |
| # fmt: off | |
| FAIRSEQ_LANGUAGE_CODES = { | |
| "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"] | |
| } | |
| # fmt: on | |
| class SMALL100Tokenizer(PreTrainedTokenizer): | |
| """ | |
| Construct an SMALL100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). | |
| This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
| this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (`str`): | |
| Path to the vocabulary file. | |
| spm_file (`str`): | |
| Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that | |
| contains the vocabulary. | |
| tgt_lang (`str`, *optional*): | |
| A string representing the target language. | |
| eos_token (`str`, *optional*, defaults to `"</s>"`): | |
| The end of sequence token. | |
| sep_token (`str`, *optional*, defaults to `"</s>"`): | |
| The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
| sequence classification or for a text and a question for question answering. It is also used as the last | |
| token of a sequence built with special tokens. | |
| unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
| The token used for padding, for example when batching sequences of different lengths. | |
| language_codes (`str`, *optional*): | |
| What language codes to use. Should be `"m2m100"`. | |
| sp_model_kwargs (`dict`, *optional*): | |
| Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
| SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
| to set: | |
| - `enable_sampling`: Enable subword regularization. | |
| - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
| - `nbest_size = {0,1}`: No sampling is performed. | |
| - `nbest_size > 1`: samples from the nbest_size results. | |
| - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
| using forward-filtering-and-backward-sampling algorithm. | |
| - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
| BPE-dropout. | |
| Examples: | |
| ```python | |
| >>> from tokenization_small100 import SMALL100Tokenizer | |
| >>> tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang="ro") | |
| >>> src_text = " UN Chief Says There Is No Military Solution in Syria" | |
| >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" | |
| >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") | |
| >>> model(**model_inputs) # should work | |
| ```""" | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| model_input_names = ["input_ids", "attention_mask"] | |
| prefix_tokens: List[int] = [] | |
| suffix_tokens: List[int] = [] | |
| def __init__( | |
| self, | |
| vocab_file, | |
| spm_file, | |
| tgt_lang=None, | |
| bos_token="<s>", | |
| eos_token="</s>", | |
| sep_token="</s>", | |
| pad_token="<pad>", | |
| unk_token="<unk>", | |
| language_codes="m2m100", | |
| sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
| num_madeup_words=8, | |
| **kwargs, | |
| ) -> None: | |
| self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
| self.language_codes = language_codes | |
| fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes] | |
| self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} | |
| kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) | |
| kwargs["additional_special_tokens"] += [ | |
| self.get_lang_token(lang_code) | |
| for lang_code in fairseq_language_code | |
| if self.get_lang_token(lang_code) not in kwargs["additional_special_tokens"] | |
| ] | |
| super().__init__( | |
| tgt_lang=tgt_lang, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| sep_token=sep_token, | |
| unk_token=unk_token, | |
| pad_token=pad_token, | |
| language_codes=language_codes, | |
| sp_model_kwargs=self.sp_model_kwargs, | |
| num_madeup_words=num_madeup_words, | |
| **kwargs, | |
| ) | |
| self.vocab_file = vocab_file | |
| self.encoder = load_json(vocab_file) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| self.spm_file = spm_file | |
| self.sp_model = load_spm(spm_file, self.sp_model_kwargs) | |
| self.encoder_size = len(self.encoder) | |
| self.lang_token_to_id = { | |
| self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code) | |
| } | |
| self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)} | |
| self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()} | |
| self._tgt_lang = tgt_lang if tgt_lang is not None else "en" | |
| self.cur_lang_id = self.get_lang_id(self._tgt_lang) | |
| self.set_lang_special_tokens(self._tgt_lang) | |
| self.num_madeup_words = num_madeup_words | |
| def vocab_size(self) -> int: | |
| return len(self.encoder) + len(self.lang_token_to_id) + self.num_madeup_words | |
| def tgt_lang(self) -> str: | |
| return self._tgt_lang | |
| def tgt_lang(self, new_tgt_lang: str) -> None: | |
| self._tgt_lang = new_tgt_lang | |
| self.set_lang_special_tokens(self._tgt_lang) | |
| def _tokenize(self, text: str) -> List[str]: | |
| return self.sp_model.encode(text, out_type=str) | |
| def _convert_token_to_id(self, token): | |
| if token in self.lang_token_to_id: | |
| return self.lang_token_to_id[token] | |
| return self.encoder.get(token, self.encoder[self.unk_token]) | |
| def _convert_id_to_token(self, index: int) -> str: | |
| """Converts an index (integer) in a token (str) using the decoder.""" | |
| if index in self.id_to_lang_token: | |
| return self.id_to_lang_token[index] | |
| return self.decoder.get(index, self.unk_token) | |
| def convert_tokens_to_string(self, tokens: List[str]) -> str: | |
| """Converts a sequence of tokens (strings for sub-words) in a single string.""" | |
| return self.sp_model.decode(tokens) | |
| def get_special_tokens_mask( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
| ) -> List[int]: | |
| """ | |
| Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
| special tokens using the tokenizer `prepare_for_model` method. | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
| Whether or not the token list is already formatted with special tokens for the model. | |
| Returns: | |
| `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
| """ | |
| if already_has_special_tokens: | |
| return super().get_special_tokens_mask( | |
| token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
| ) | |
| prefix_ones = [1] * len(self.prefix_tokens) | |
| suffix_ones = [1] * len(self.suffix_tokens) | |
| if token_ids_1 is None: | |
| return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones | |
| return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones | |
| def build_inputs_with_special_tokens( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
| adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: | |
| - `input_ids` (for encoder) `X [eos, src_lang_code]` | |
| - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` | |
| BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
| separator. | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs to which the special tokens will be added. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
| """ | |
| if token_ids_1 is None: | |
| if self.prefix_tokens is None: | |
| return token_ids_0 + self.suffix_tokens | |
| else: | |
| return self.prefix_tokens + token_ids_0 + self.suffix_tokens | |
| # We don't expect to process pairs, but leave the pair logic for API consistency | |
| if self.prefix_tokens is None: | |
| return token_ids_0 + token_ids_1 + self.suffix_tokens | |
| else: | |
| return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens | |
| def get_vocab(self) -> Dict: | |
| vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
| vocab.update(self.added_tokens_encoder) | |
| return vocab | |
| def __getstate__(self) -> Dict: | |
| state = self.__dict__.copy() | |
| state["sp_model"] = None | |
| return state | |
| def __setstate__(self, d: Dict) -> None: | |
| self.__dict__ = d | |
| # for backward compatibility | |
| if not hasattr(self, "sp_model_kwargs"): | |
| self.sp_model_kwargs = {} | |
| self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| save_dir = Path(save_directory) | |
| if not save_dir.is_dir(): | |
| raise OSError(f"{save_directory} should be a directory") | |
| vocab_save_path = save_dir / ( | |
| (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] | |
| ) | |
| spm_save_path = save_dir / ( | |
| (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] | |
| ) | |
| save_json(self.encoder, vocab_save_path) | |
| if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): | |
| copyfile(self.spm_file, spm_save_path) | |
| elif not os.path.isfile(self.spm_file): | |
| with open(spm_save_path, "wb") as fi: | |
| content_spiece_model = self.sp_model.serialized_model_proto() | |
| fi.write(content_spiece_model) | |
| return (str(vocab_save_path), str(spm_save_path)) | |
| def prepare_seq2seq_batch( | |
| self, | |
| src_texts: List[str], | |
| tgt_texts: Optional[List[str]] = None, | |
| tgt_lang: str = "ro", | |
| **kwargs, | |
| ) -> BatchEncoding: | |
| self.tgt_lang = tgt_lang | |
| self.set_lang_special_tokens(self.tgt_lang) | |
| return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) | |
| def _build_translation_inputs(self, raw_inputs, tgt_lang: Optional[str], **extra_kwargs): | |
| """Used by translation pipeline, to prepare inputs for the generate function""" | |
| if tgt_lang is None: | |
| raise ValueError("Translation requires a `tgt_lang` for this model") | |
| self.tgt_lang = tgt_lang | |
| inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs) | |
| return inputs | |
| def _switch_to_input_mode(self): | |
| self.set_lang_special_tokens(self.tgt_lang) | |
| def _switch_to_target_mode(self): | |
| self.prefix_tokens = None | |
| self.suffix_tokens = [self.eos_token_id] | |
| def set_lang_special_tokens(self, src_lang: str) -> None: | |
| """Reset the special tokens to the tgt lang setting. No prefix and suffix=[eos, tgt_lang_code].""" | |
| lang_token = self.get_lang_token(src_lang) | |
| self.cur_lang_id = self.lang_token_to_id[lang_token] | |
| self.prefix_tokens = [self.cur_lang_id] | |
| self.suffix_tokens = [self.eos_token_id] | |
| def get_lang_token(self, lang: str) -> str: | |
| return self.lang_code_to_token[lang] | |
| def get_lang_id(self, lang: str) -> int: | |
| lang_token = self.get_lang_token(lang) | |
| return self.lang_token_to_id[lang_token] | |
| def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: | |
| spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) | |
| spm.Load(str(path)) | |
| return spm | |
| def load_json(path: str) -> Union[Dict, List]: | |
| with open(path, "r") as f: | |
| return json.load(f) | |
| def save_json(data, path: str) -> None: | |
| with open(path, "w") as f: | |
| json.dump(data, f, indent=2) | |