Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, DiffusionPipeline | |
| DESCRIPTION = "# SDXL" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| variant="fp16", | |
| ).to(device) | |
| refiner = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-refiner-1.0", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| variant="fp16", | |
| ).to(device) | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """Determine and return the random seed to use for model generation or sampling. | |
| - MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max). | |
| - This function is typically used to ensure reproducibility or to introduce randomness in model generation. | |
| - The random seed affects the stochastic processes in downstream model inference or sampling. | |
| Args: | |
| randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is. | |
| seed (int): The seed value to use if randomize_seed is False. | |
| Returns: | |
| int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument. | |
| """ | |
| rng = np.random.default_rng() | |
| return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed | |
| def generate( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| prompt_2: str = "", | |
| negative_prompt_2: str = "", | |
| use_negative_prompt: bool = False, | |
| use_prompt_2: bool = False, | |
| use_negative_prompt_2: bool = False, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale_base: float = 5.0, | |
| guidance_scale_refiner: float = 5.0, | |
| num_inference_steps_base: int = 25, | |
| num_inference_steps_refiner: int = 25, | |
| apply_refiner: bool = False, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 | |
| ) -> PIL.Image.Image: | |
| """Generates an image from a text prompt using the SDXL (Stable Diffusion XL) model. | |
| This function allows fine-grained control over image generation through prompts, | |
| negative prompts, and optional refinement stages. | |
| Note: | |
| All prompt-related inputs (e.g., `prompt`, `negative_prompt`, `prompt_2`, and `negative_prompt_2`) | |
| must be written in English for proper model performance. | |
| Args: | |
| prompt (str): Main text prompt used to guide image generation. | |
| negative_prompt (str, optional): Text specifying elements to exclude from the image. | |
| prompt_2 (str, optional): Secondary prompt for additional guidance. Used only if `use_prompt_2` is True. | |
| negative_prompt_2 (str, optional): Secondary negative prompt. Used only if `use_negative_prompt_2` is True. | |
| use_negative_prompt (bool, optional): Whether to apply `negative_prompt` during generation. | |
| use_prompt_2 (bool, optional): Whether to apply `prompt_2` during generation. | |
| use_negative_prompt_2 (bool, optional): Whether to apply `negative_prompt_2` during generation. | |
| seed (int, optional): Seed for random number generation. Use 0 to generate a random seed. | |
| width (int, optional): Width of the output image in pixels. | |
| height (int, optional): Height of the output image in pixels. | |
| guidance_scale_base (float, optional): Guidance scale for the base model. Higher values follow the prompt more closely. | |
| guidance_scale_refiner (float, optional): Guidance scale for the refiner model. | |
| num_inference_steps_base (int, optional): Number of inference steps for the base model. | |
| num_inference_steps_refiner (int, optional): Number of inference steps for the refiner model. | |
| apply_refiner (bool, optional): Whether to apply the refiner stage after the base image is generated. | |
| progress (gr.Progress, optional): Gradio progress object to show progress during generation. | |
| Returns: | |
| PIL.Image.Image: The generated image as a PIL Image object. | |
| """ | |
| generator = torch.Generator().manual_seed(seed) | |
| if not use_negative_prompt: | |
| negative_prompt = None # type: ignore | |
| if not use_prompt_2: | |
| prompt_2 = None # type: ignore | |
| if not use_negative_prompt_2: | |
| negative_prompt_2 = None # type: ignore | |
| if not apply_refiner: | |
| return pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| prompt_2=prompt_2, | |
| negative_prompt_2=negative_prompt_2, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale_base, | |
| num_inference_steps=num_inference_steps_base, | |
| generator=generator, | |
| output_type="pil", | |
| ).images[0] | |
| latents = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| prompt_2=prompt_2, | |
| negative_prompt_2=negative_prompt_2, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale_base, | |
| num_inference_steps=num_inference_steps_base, | |
| generator=generator, | |
| output_type="latent", | |
| ).images | |
| images = refiner( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| prompt_2=prompt_2, | |
| negative_prompt_2=negative_prompt_2, | |
| guidance_scale=guidance_scale_refiner, | |
| num_inference_steps=num_inference_steps_refiner, | |
| image=latents, | |
| generator=generator, | |
| ).images | |
| return images[0] | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| ] | |
| with gr.Blocks(css_paths="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| submit_btn=True, | |
| ) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Row(): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
| use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
| use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | |
| negative_prompt = gr.Textbox( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| value="", | |
| ) | |
| prompt_2 = gr.Textbox( | |
| label="Prompt 2", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| visible=False, | |
| value="", | |
| ) | |
| negative_prompt_2 = gr.Textbox( | |
| label="Negative prompt 2", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| value="", | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| apply_refiner = gr.Checkbox(label="Apply refiner", value=True) | |
| with gr.Row(): | |
| guidance_scale_base = gr.Slider( | |
| label="Guidance scale for base", | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps_base = gr.Slider( | |
| label="Number of inference steps for base", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| with gr.Row() as refiner_params: | |
| guidance_scale_refiner = gr.Slider( | |
| label="Guidance scale for refiner", | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps_refiner = gr.Slider( | |
| label="Number of inference steps for refiner", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=result, | |
| fn=generate, | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.Textbox(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| use_prompt_2.change( | |
| fn=lambda x: gr.Textbox(visible=x), | |
| inputs=use_prompt_2, | |
| outputs=prompt_2, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| use_negative_prompt_2.change( | |
| fn=lambda x: gr.Textbox(visible=x), | |
| inputs=use_negative_prompt_2, | |
| outputs=negative_prompt_2, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| apply_refiner.change( | |
| fn=lambda x: gr.Row(visible=x), | |
| inputs=apply_refiner, | |
| outputs=refiner_params, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| negative_prompt.submit, | |
| prompt_2.submit, | |
| negative_prompt_2.submit, | |
| ], | |
| fn=get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=seed, | |
| queue=False, | |
| ).then( | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| prompt_2, | |
| negative_prompt_2, | |
| use_negative_prompt, | |
| use_prompt_2, | |
| use_negative_prompt_2, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale_base, | |
| guidance_scale_refiner, | |
| num_inference_steps_base, | |
| num_inference_steps_refiner, | |
| apply_refiner, | |
| ], | |
| outputs=result, | |
| api_name="predict", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(mcp_server=True) | |