Spaces:
Runtime error
Runtime error
Update
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
-
import functools
|
| 6 |
import os
|
| 7 |
import random
|
| 8 |
import shlex
|
|
@@ -58,12 +57,16 @@ def load_model(device: torch.device) -> nn.Module:
|
|
| 58 |
return model
|
| 59 |
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
@torch.inference_mode()
|
| 66 |
-
def generate_image(
|
| 67 |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
| 68 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 69 |
return out[0].cpu().numpy()
|
|
@@ -77,14 +80,15 @@ def generate_interpolated_images(
|
|
| 77 |
psi0: float,
|
| 78 |
psi1: float,
|
| 79 |
randomize_noise: bool,
|
| 80 |
-
model: nn.Module,
|
| 81 |
-
device: torch.device,
|
| 82 |
) -> list[np.ndarray]:
|
| 83 |
seed0 = int(np.clip(seed0, 0, MAX_SEED))
|
| 84 |
seed1 = int(np.clip(seed1, 0, MAX_SEED))
|
| 85 |
|
| 86 |
-
z0 = generate_z(model.style_dim, seed0
|
| 87 |
-
z1 = generate_z(model.style_dim, seed1
|
|
|
|
|
|
|
|
|
|
| 88 |
vec = z1 - z0
|
| 89 |
dvec = vec / (num_intermediate + 1)
|
| 90 |
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
|
|
@@ -92,15 +96,11 @@ def generate_interpolated_images(
|
|
| 92 |
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
|
| 93 |
res = []
|
| 94 |
for z, psi in zip(zs, psis):
|
| 95 |
-
out = generate_image(
|
| 96 |
res.append(out)
|
| 97 |
return res
|
| 98 |
|
| 99 |
|
| 100 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 101 |
-
model = load_model(device)
|
| 102 |
-
fn = functools.partial(generate_interpolated_images, model=model, device=device)
|
| 103 |
-
|
| 104 |
examples = [
|
| 105 |
[29703, 55376, 3, 0.7, 0.7, False],
|
| 106 |
[34141, 36864, 5, 0.7, 0.7, False],
|
|
@@ -141,13 +141,15 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 141 |
examples=examples,
|
| 142 |
inputs=inputs,
|
| 143 |
outputs=result,
|
| 144 |
-
fn=
|
| 145 |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
| 146 |
)
|
| 147 |
run_button.click(
|
| 148 |
-
fn=
|
| 149 |
inputs=inputs,
|
| 150 |
outputs=result,
|
| 151 |
api_name="run",
|
| 152 |
)
|
| 153 |
-
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
|
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
import shlex
|
|
|
|
| 57 |
return model
|
| 58 |
|
| 59 |
|
| 60 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 61 |
+
model = load_model(device)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def generate_z(z_dim: int, seed: int) -> torch.Tensor:
|
| 65 |
+
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()
|
| 66 |
|
| 67 |
|
| 68 |
@torch.inference_mode()
|
| 69 |
+
def generate_image(z: torch.Tensor, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
|
| 70 |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
| 71 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 72 |
return out[0].cpu().numpy()
|
|
|
|
| 80 |
psi0: float,
|
| 81 |
psi1: float,
|
| 82 |
randomize_noise: bool,
|
|
|
|
|
|
|
| 83 |
) -> list[np.ndarray]:
|
| 84 |
seed0 = int(np.clip(seed0, 0, MAX_SEED))
|
| 85 |
seed1 = int(np.clip(seed1, 0, MAX_SEED))
|
| 86 |
|
| 87 |
+
z0 = generate_z(model.style_dim, seed0)
|
| 88 |
+
z1 = generate_z(model.style_dim, seed1)
|
| 89 |
+
z0 = z0.to(device)
|
| 90 |
+
z1 = z1.to(device)
|
| 91 |
+
|
| 92 |
vec = z1 - z0
|
| 93 |
dvec = vec / (num_intermediate + 1)
|
| 94 |
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
|
|
|
|
| 96 |
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
|
| 97 |
res = []
|
| 98 |
for z, psi in zip(zs, psis):
|
| 99 |
+
out = generate_image(z, psi, randomize_noise)
|
| 100 |
res.append(out)
|
| 101 |
return res
|
| 102 |
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
examples = [
|
| 105 |
[29703, 55376, 3, 0.7, 0.7, False],
|
| 106 |
[34141, 36864, 5, 0.7, 0.7, False],
|
|
|
|
| 141 |
examples=examples,
|
| 142 |
inputs=inputs,
|
| 143 |
outputs=result,
|
| 144 |
+
fn=generate_interpolated_images,
|
| 145 |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
| 146 |
)
|
| 147 |
run_button.click(
|
| 148 |
+
fn=generate_interpolated_images,
|
| 149 |
inputs=inputs,
|
| 150 |
outputs=result,
|
| 151 |
api_name="run",
|
| 152 |
)
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
demo.queue(max_size=10).launch()
|