Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| import gradio as gr | |
| import PIL.Image | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoProcessor | |
| DESCRIPTION = "# Image Captioning with GIT" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model_id = "microsoft/git-large-coco" | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained(model_id).to(device) | |
| def run(image: PIL.Image.Image) -> str: | |
| inputs = processor(images=image, return_tensors="pt").to(device) | |
| generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5) | |
| return processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| with gr.Blocks(css_paths="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| input_image = gr.Image(type="pil") | |
| run_button = gr.Button("Caption") | |
| output = gr.Textbox(label="Result") | |
| run_button.click( | |
| fn=run, | |
| inputs=input_image, | |
| outputs=output, | |
| api_name="caption", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |