xuehongyang
ser
83d8d3c
raw
history blame
2.12 kB
"""This script is the data preparation script for Deep3DFaceRecon_pytorch
"""
import argparse
import os
import warnings
import numpy as np
from util.detect_lm68 import detect_68p
from util.detect_lm68 import load_lm_graph
from util.generate_list import check_list
from util.generate_list import write_list
from util.skin_mask import get_skin_mask
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--data_root", type=str, default="datasets", help="root directory for training data")
parser.add_argument("--img_folder", nargs="+", required=True, help="folders of training images")
parser.add_argument("--mode", type=str, default="train", help="train or val")
opt = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def data_prepare(folder_list, mode):
lm_sess, input_op, output_op = load_lm_graph(
"./checkpoints/lm_model/68lm_detector.pb"
) # load a tensorflow version 68-landmark detector
for img_folder in folder_list:
detect_68p(img_folder, lm_sess, input_op, output_op) # detect landmarks for images
get_skin_mask(img_folder) # generate skin attention mask for images
# create files that record path to all training data
msks_list = []
for img_folder in folder_list:
path = os.path.join(img_folder, "mask")
msks_list += [
"/".join([img_folder, "mask", i])
for i in sorted(os.listdir(path))
if "jpg" in i or "png" in i or "jpeg" in i or "PNG" in i
]
imgs_list = [i.replace("mask/", "") for i in msks_list]
lms_list = [i.replace("mask", "landmarks") for i in msks_list]
lms_list = [".".join(i.split(".")[:-1]) + ".txt" for i in lms_list]
lms_list_final, imgs_list_final, msks_list_final = check_list(
lms_list, imgs_list, msks_list
) # check if the path is valid
write_list(lms_list_final, imgs_list_final, msks_list_final, mode=mode) # save files
if __name__ == "__main__":
print("Datasets:", opt.img_folder)
data_prepare([os.path.join(opt.data_root, folder) for folder in opt.img_folder], opt.mode)