Spaces:
Build error
Build error
| import os | |
| import sys | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap | |
| from prettytable import PrettyTable | |
| from sklearn.metrics import auc | |
| from sklearn.metrics import roc_curve | |
| with open(sys.argv[1], "r") as f: | |
| files = f.readlines() | |
| files = [x.strip() for x in files] | |
| image_path = "/train_tmp/IJB_release/IJBC" | |
| def read_template_pair_list(path): | |
| pairs = pd.read_csv(path, sep=" ", header=None).values | |
| t1 = pairs[:, 0].astype(np.int) | |
| t2 = pairs[:, 1].astype(np.int) | |
| label = pairs[:, 2].astype(np.int) | |
| return t1, t2, label | |
| p1, p2, label = read_template_pair_list(os.path.join("%s/meta" % image_path, "%s_template_pair_label.txt" % "ijbc")) | |
| methods = [] | |
| scores = [] | |
| for file in files: | |
| methods.append(file) | |
| scores.append(np.load(file)) | |
| methods = np.array(methods) | |
| scores = dict(zip(methods, scores)) | |
| colours = dict(zip(methods, sample_colours_from_colourmap(methods.shape[0], "Set2"))) | |
| x_labels = [10**-6, 10**-5, 10**-4, 10**-3, 10**-2, 10**-1] | |
| tpr_fpr_table = PrettyTable(["Methods"] + [str(x) for x in x_labels]) | |
| fig = plt.figure() | |
| for method in methods: | |
| fpr, tpr, _ = roc_curve(label, scores[method]) | |
| roc_auc = auc(fpr, tpr) | |
| fpr = np.flipud(fpr) | |
| tpr = np.flipud(tpr) # select largest tpr at same fpr | |
| plt.plot( | |
| fpr, tpr, color=colours[method], lw=1, label=("[%s (AUC = %0.4f %%)]" % (method.split("-")[-1], roc_auc * 100)) | |
| ) | |
| tpr_fpr_row = [] | |
| tpr_fpr_row.append(method) | |
| for fpr_iter in np.arange(len(x_labels)): | |
| _, min_index = min(list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) | |
| tpr_fpr_row.append("%.2f" % (tpr[min_index] * 100)) | |
| tpr_fpr_table.add_row(tpr_fpr_row) | |
| plt.xlim([10**-6, 0.1]) | |
| plt.ylim([0.3, 1.0]) | |
| plt.grid(linestyle="--", linewidth=1) | |
| plt.xticks(x_labels) | |
| plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) | |
| plt.xscale("log") | |
| plt.xlabel("False Positive Rate") | |
| plt.ylabel("True Positive Rate") | |
| plt.title("ROC on IJB") | |
| plt.legend(loc="lower right") | |
| print(tpr_fpr_table) | |