xuehongyang
ser
83d8d3c
raw
history blame
11.6 kB
"""This script defines the face reconstruction model for Deep3DFaceRecon_pytorch
"""
import numpy as np
import torch
import trimesh
from scipy.io import savemat
from util import util
from util.nvdiffrast import MeshRenderer
from util.preprocess import estimate_norm_torch
from . import networks
from .base_model import BaseModel
from .bfm import ParametricFaceModel
from .losses import landmark_loss
from .losses import perceptual_loss
from .losses import photo_loss
from .losses import reflectance_loss
from .losses import reg_loss
class FaceReconModel(BaseModel):
@staticmethod
def modify_commandline_options(parser, is_train=True):
"""Configures options specific for CUT model"""
# net structure and parameters
parser.add_argument(
"--net_recon",
type=str,
default="resnet50",
choices=["resnet18", "resnet34", "resnet50"],
help="network structure",
)
parser.add_argument("--init_path", type=str, default="checkpoints/init_model/resnet50-0676ba61.pth")
parser.add_argument(
"--use_last_fc",
type=util.str2bool,
nargs="?",
const=True,
default=False,
help="zero initialize the last fc",
)
parser.add_argument("--bfm_folder", type=str, default="BFM")
parser.add_argument("--bfm_model", type=str, default="BFM_model_front.mat", help="bfm model")
# renderer parameters
parser.add_argument("--focal", type=float, default=1015.0)
parser.add_argument("--center", type=float, default=112.0)
parser.add_argument("--camera_d", type=float, default=10.0)
parser.add_argument("--z_near", type=float, default=5.0)
parser.add_argument("--z_far", type=float, default=15.0)
parser.add_argument(
"--use_opengl", type=util.str2bool, nargs="?", const=True, default=True, help="use opengl context or not"
)
if is_train:
# training parameters
parser.add_argument(
"--net_recog",
type=str,
default="r50",
choices=["r18", "r43", "r50"],
help="face recog network structure",
)
parser.add_argument(
"--net_recog_path", type=str, default="checkpoints/recog_model/ms1mv3_arcface_r50_fp16/backbone.pth"
)
parser.add_argument(
"--use_crop_face",
type=util.str2bool,
nargs="?",
const=True,
default=False,
help="use crop mask for photo loss",
)
parser.add_argument(
"--use_predef_M",
type=util.str2bool,
nargs="?",
const=True,
default=False,
help="use predefined M for predicted face",
)
# augmentation parameters
parser.add_argument("--shift_pixs", type=float, default=10.0, help="shift pixels")
parser.add_argument("--scale_delta", type=float, default=0.1, help="delta scale factor")
parser.add_argument("--rot_angle", type=float, default=10.0, help="rot angles, degree")
# loss weights
parser.add_argument("--w_feat", type=float, default=0.2, help="weight for feat loss")
parser.add_argument("--w_color", type=float, default=1.92, help="weight for loss loss")
parser.add_argument("--w_reg", type=float, default=3.0e-4, help="weight for reg loss")
parser.add_argument("--w_id", type=float, default=1.0, help="weight for id_reg loss")
parser.add_argument("--w_exp", type=float, default=0.8, help="weight for exp_reg loss")
parser.add_argument("--w_tex", type=float, default=1.7e-2, help="weight for tex_reg loss")
parser.add_argument("--w_gamma", type=float, default=10.0, help="weight for gamma loss")
parser.add_argument("--w_lm", type=float, default=1.6e-3, help="weight for lm loss")
parser.add_argument("--w_reflc", type=float, default=5.0, help="weight for reflc loss")
opt, _ = parser.parse_known_args()
parser.set_defaults(focal=1015.0, center=112.0, camera_d=10.0, use_last_fc=False, z_near=5.0, z_far=15.0)
if is_train:
parser.set_defaults(use_crop_face=True, use_predef_M=False)
return parser
def __init__(self, opt):
"""Initialize this model class.
Parameters:
opt -- training/test options
A few things can be done here.
- (required) call the initialization function of BaseModel
- define loss function, visualization images, model names, and optimizers
"""
BaseModel.__init__(self, opt) # call the initialization method of BaseModel
self.visual_names = ["output_vis"]
self.model_names = ["net_recon"]
self.parallel_names = self.model_names + ["renderer"]
self.net_recon = networks.define_net_recon(
net_recon=opt.net_recon, use_last_fc=opt.use_last_fc, init_path=opt.init_path
)
self.facemodel = ParametricFaceModel(
bfm_folder=opt.bfm_folder,
camera_distance=opt.camera_d,
focal=opt.focal,
center=opt.center,
is_train=self.isTrain,
default_name=opt.bfm_model,
)
fov = 2 * np.arctan(opt.center / opt.focal) * 180 / np.pi
self.renderer = MeshRenderer(
rasterize_fov=fov,
znear=opt.z_near,
zfar=opt.z_far,
rasterize_size=int(2 * opt.center),
use_opengl=opt.use_opengl,
)
if self.isTrain:
self.loss_names = ["all", "feat", "color", "lm", "reg", "gamma", "reflc"]
self.net_recog = networks.define_net_recog(net_recog=opt.net_recog, pretrained_path=opt.net_recog_path)
# loss func name: (compute_%s_loss) % loss_name
self.compute_feat_loss = perceptual_loss
self.comupte_color_loss = photo_loss
self.compute_lm_loss = landmark_loss
self.compute_reg_loss = reg_loss
self.compute_reflc_loss = reflectance_loss
self.optimizer = torch.optim.Adam(self.net_recon.parameters(), lr=opt.lr)
self.optimizers = [self.optimizer]
self.parallel_names += ["net_recog"]
# Our program will automatically call <model.setup> to define schedulers, load networks, and print networks
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input: a dictionary that contains the data itself and its metadata information.
"""
self.input_img = input["imgs"].to(self.device)
self.atten_mask = input["msks"].to(self.device) if "msks" in input else None
self.gt_lm = input["lms"].to(self.device) if "lms" in input else None
self.trans_m = input["M"].to(self.device) if "M" in input else None
self.image_paths = input["im_paths"] if "im_paths" in input else None
def forward(self):
output_coeff = self.net_recon(self.input_img)
self.facemodel.to(self.device)
self.pred_vertex, self.pred_tex, self.pred_color, self.pred_lm = self.facemodel.compute_for_render(output_coeff)
self.pred_mask, _, self.pred_face = self.renderer(
self.pred_vertex, self.facemodel.face_buf, feat=self.pred_color
)
self.pred_coeffs_dict = self.facemodel.split_coeff(output_coeff)
def compute_losses(self):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
assert self.net_recog.training == False
trans_m = self.trans_m
if not self.opt.use_predef_M:
trans_m = estimate_norm_torch(self.pred_lm, self.input_img.shape[-2])
pred_feat = self.net_recog(self.pred_face, trans_m)
gt_feat = self.net_recog(self.input_img, self.trans_m)
self.loss_feat = self.opt.w_feat * self.compute_feat_loss(pred_feat, gt_feat)
face_mask = self.pred_mask
if self.opt.use_crop_face:
face_mask, _, _ = self.renderer(self.pred_vertex, self.facemodel.front_face_buf)
face_mask = face_mask.detach()
self.loss_color = self.opt.w_color * self.comupte_color_loss(
self.pred_face, self.input_img, self.atten_mask * face_mask
)
loss_reg, loss_gamma = self.compute_reg_loss(self.pred_coeffs_dict, self.opt)
self.loss_reg = self.opt.w_reg * loss_reg
self.loss_gamma = self.opt.w_gamma * loss_gamma
self.loss_lm = self.opt.w_lm * self.compute_lm_loss(self.pred_lm, self.gt_lm)
self.loss_reflc = self.opt.w_reflc * self.compute_reflc_loss(self.pred_tex, self.facemodel.skin_mask)
self.loss_all = (
self.loss_feat + self.loss_color + self.loss_reg + self.loss_gamma + self.loss_lm + self.loss_reflc
)
def optimize_parameters(self, isTrain=True):
self.forward()
self.compute_losses()
"""Update network weights; it will be called in every training iteration."""
if isTrain:
self.optimizer.zero_grad()
self.loss_all.backward()
self.optimizer.step()
def compute_visuals(self):
with torch.no_grad():
input_img_numpy = 255.0 * self.input_img.detach().cpu().permute(0, 2, 3, 1).numpy()
output_vis = self.pred_face * self.pred_mask + (1 - self.pred_mask) * self.input_img
output_vis_numpy_raw = 255.0 * output_vis.detach().cpu().permute(0, 2, 3, 1).numpy()
if self.gt_lm is not None:
gt_lm_numpy = self.gt_lm.cpu().numpy()
pred_lm_numpy = self.pred_lm.detach().cpu().numpy()
output_vis_numpy = util.draw_landmarks(output_vis_numpy_raw, gt_lm_numpy, "b")
output_vis_numpy = util.draw_landmarks(output_vis_numpy, pred_lm_numpy, "r")
output_vis_numpy = np.concatenate((input_img_numpy, output_vis_numpy_raw, output_vis_numpy), axis=-2)
else:
output_vis_numpy = np.concatenate((input_img_numpy, output_vis_numpy_raw), axis=-2)
self.output_vis = (
torch.tensor(output_vis_numpy / 255.0, dtype=torch.float32).permute(0, 3, 1, 2).to(self.device)
)
def save_mesh(self, name):
recon_shape = self.pred_vertex # get reconstructed shape
recon_shape[..., -1] = 10 - recon_shape[..., -1] # from camera space to world space
recon_shape = recon_shape.cpu().numpy()[0]
recon_color = self.pred_color
recon_color = recon_color.cpu().numpy()[0]
tri = self.facemodel.face_buf.cpu().numpy()
mesh = trimesh.Trimesh(
vertices=recon_shape,
faces=tri,
vertex_colors=np.clip(255.0 * recon_color, 0, 255).astype(np.uint8),
process=False,
)
mesh.export(name)
def save_coeff(self, name):
pred_coeffs = {key: self.pred_coeffs_dict[key].cpu().numpy() for key in self.pred_coeffs_dict}
pred_lm = self.pred_lm.cpu().numpy()
pred_lm = np.stack(
[pred_lm[:, :, 0], self.input_img.shape[2] - 1 - pred_lm[:, :, 1]], axis=2
) # transfer to image coordinate
pred_coeffs["lm68"] = pred_lm
savemat(name, pred_coeffs)