xuehongyang
ser
83d8d3c
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from AdaptiveWingLoss.core.coord_conv import CoordConvTh
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False, dilation=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias, dilation=dilation)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
# self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
# self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
# out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
# out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(ConvBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), padding=1, dilation=1)
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), padding=1, dilation=1)
if in_planes != out_planes:
self.downsample = nn.Sequential(
nn.BatchNorm2d(in_planes),
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features, first_one=False):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self.coordconv = CoordConvTh(
x_dim=64,
y_dim=64,
with_r=True,
with_boundary=True,
in_channels=256,
first_one=first_one,
out_channels=256,
kernel_size=1,
stride=1,
padding=0,
)
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module("b1_" + str(level), ConvBlock(256, 256))
self.add_module("b2_" + str(level), ConvBlock(256, 256))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module("b2_plus_" + str(level), ConvBlock(256, 256))
self.add_module("b3_" + str(level), ConvBlock(256, 256))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules["b1_" + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules["b2_" + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules["b2_plus_" + str(level)](low2)
low3 = low2
low3 = self._modules["b3_" + str(level)](low3)
up2 = F.upsample(low3, scale_factor=2, mode="nearest")
return up1 + up2
def forward(self, x, heatmap):
x, last_channel = self.coordconv(x, heatmap)
return self._forward(self.depth, x), last_channel
class FAN(nn.Module):
def __init__(self, num_modules=1, end_relu=False, gray_scale=False, num_landmarks=68):
super(FAN, self).__init__()
self.num_modules = num_modules
self.gray_scale = gray_scale
self.end_relu = end_relu
self.num_landmarks = num_landmarks
# Base part
if self.gray_scale:
self.conv1 = CoordConvTh(
x_dim=256,
y_dim=256,
with_r=True,
with_boundary=False,
in_channels=3,
out_channels=64,
kernel_size=7,
stride=2,
padding=3,
)
else:
self.conv1 = CoordConvTh(
x_dim=256,
y_dim=256,
with_r=True,
with_boundary=False,
in_channels=3,
out_channels=64,
kernel_size=7,
stride=2,
padding=3,
)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 128)
self.conv4 = ConvBlock(128, 256)
# Stacking part
for hg_module in range(self.num_modules):
if hg_module == 0:
first_one = True
else:
first_one = False
self.add_module("m" + str(hg_module), HourGlass(1, 4, 256, first_one))
self.add_module("top_m_" + str(hg_module), ConvBlock(256, 256))
self.add_module("conv_last" + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module("bn_end" + str(hg_module), nn.BatchNorm2d(256))
self.add_module("l" + str(hg_module), nn.Conv2d(256, num_landmarks + 1, kernel_size=1, stride=1, padding=0))
if hg_module < self.num_modules - 1:
self.add_module("bl" + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module(
"al" + str(hg_module), nn.Conv2d(num_landmarks + 1, 256, kernel_size=1, stride=1, padding=0)
)
def forward(self, x):
x, _ = self.conv1(x)
x = F.relu(self.bn1(x), True)
# x = F.relu(self.bn1(self.conv1(x)), True)
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
boundary_channels = []
tmp_out = None
for i in range(self.num_modules):
hg, boundary_channel = self._modules["m" + str(i)](previous, tmp_out)
ll = hg
ll = self._modules["top_m_" + str(i)](ll)
ll = F.relu(self._modules["bn_end" + str(i)](self._modules["conv_last" + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules["l" + str(i)](ll)
if self.end_relu:
tmp_out = F.relu(tmp_out) # HACK: Added relu
outputs.append(tmp_out)
boundary_channels.append(boundary_channel)
if i < self.num_modules - 1:
ll = self._modules["bl" + str(i)](ll)
tmp_out_ = self._modules["al" + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs, boundary_channels