Spaces:
Build error
Build error
| from .iresnet import iresnet100 | |
| from .iresnet import iresnet18 | |
| from .iresnet import iresnet200 | |
| from .iresnet import iresnet34 | |
| from .iresnet import iresnet50 | |
| from .mobilefacenet import get_mbf | |
| def get_model(name, **kwargs): | |
| # resnet | |
| if name == "r18": | |
| return iresnet18(False, **kwargs) | |
| elif name == "r34": | |
| return iresnet34(False, **kwargs) | |
| elif name == "r50": | |
| return iresnet50(False, **kwargs) | |
| elif name == "r100": | |
| return iresnet100(False, **kwargs) | |
| elif name == "r200": | |
| return iresnet200(False, **kwargs) | |
| elif name == "r2060": | |
| from .iresnet2060 import iresnet2060 | |
| return iresnet2060(False, **kwargs) | |
| elif name == "mbf": | |
| fp16 = kwargs.get("fp16", False) | |
| num_features = kwargs.get("num_features", 512) | |
| return get_mbf(fp16=fp16, num_features=num_features) | |
| elif name == "mbf_large": | |
| from .mobilefacenet import get_mbf_large | |
| fp16 = kwargs.get("fp16", False) | |
| num_features = kwargs.get("num_features", 512) | |
| return get_mbf_large(fp16=fp16, num_features=num_features) | |
| elif name == "vit_t": | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=256, | |
| depth=12, | |
| num_heads=8, | |
| drop_path_rate=0.1, | |
| norm_layer="ln", | |
| mask_ratio=0.1, | |
| ) | |
| elif name == "vit_t_dp005_mask0": # For WebFace42M | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=256, | |
| depth=12, | |
| num_heads=8, | |
| drop_path_rate=0.05, | |
| norm_layer="ln", | |
| mask_ratio=0.0, | |
| ) | |
| elif name == "vit_s": | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=512, | |
| depth=12, | |
| num_heads=8, | |
| drop_path_rate=0.1, | |
| norm_layer="ln", | |
| mask_ratio=0.1, | |
| ) | |
| elif name == "vit_s_dp005_mask_0": # For WebFace42M | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=512, | |
| depth=12, | |
| num_heads=8, | |
| drop_path_rate=0.05, | |
| norm_layer="ln", | |
| mask_ratio=0.0, | |
| ) | |
| elif name == "vit_b": | |
| # this is a feature | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=512, | |
| depth=24, | |
| num_heads=8, | |
| drop_path_rate=0.1, | |
| norm_layer="ln", | |
| mask_ratio=0.1, | |
| using_checkpoint=True, | |
| ) | |
| elif name == "vit_b_dp005_mask_005": # For WebFace42M | |
| # this is a feature | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=512, | |
| depth=24, | |
| num_heads=8, | |
| drop_path_rate=0.05, | |
| norm_layer="ln", | |
| mask_ratio=0.05, | |
| using_checkpoint=True, | |
| ) | |
| elif name == "vit_l_dp005_mask_005": # For WebFace42M | |
| # this is a feature | |
| num_features = kwargs.get("num_features", 512) | |
| from .vit import VisionTransformer | |
| return VisionTransformer( | |
| img_size=112, | |
| patch_size=9, | |
| num_classes=num_features, | |
| embed_dim=768, | |
| depth=24, | |
| num_heads=8, | |
| drop_path_rate=0.05, | |
| norm_layer="ln", | |
| mask_ratio=0.05, | |
| using_checkpoint=True, | |
| ) | |
| else: | |
| raise ValueError() | |