Spaces:
Build error
Build error
| import torch | |
| from torch import nn | |
| from torch.utils.checkpoint import checkpoint | |
| __all__ = ["iresnet18", "iresnet34", "iresnet50", "iresnet100", "iresnet200"] | |
| using_ckpt = False | |
| def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d( | |
| in_planes, | |
| out_planes, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=dilation, | |
| groups=groups, | |
| bias=False, | |
| dilation=dilation, | |
| ) | |
| def conv1x1(in_planes, out_planes, stride=1): | |
| """1x1 convolution""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
| class IBasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1): | |
| super(IBasicBlock, self).__init__() | |
| if groups != 1 or base_width != 64: | |
| raise ValueError("BasicBlock only supports groups=1 and base_width=64") | |
| if dilation > 1: | |
| raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
| self.bn1 = nn.BatchNorm2d( | |
| inplanes, | |
| eps=1e-05, | |
| ) | |
| self.conv1 = conv3x3(inplanes, planes) | |
| self.bn2 = nn.BatchNorm2d( | |
| planes, | |
| eps=1e-05, | |
| ) | |
| self.prelu = nn.PReLU(planes) | |
| self.conv2 = conv3x3(planes, planes, stride) | |
| self.bn3 = nn.BatchNorm2d( | |
| planes, | |
| eps=1e-05, | |
| ) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward_impl(self, x): | |
| identity = x | |
| out = self.bn1(x) | |
| out = self.conv1(out) | |
| out = self.bn2(out) | |
| out = self.prelu(out) | |
| out = self.conv2(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| return out | |
| def forward(self, x): | |
| if self.training and using_ckpt: | |
| return checkpoint(self.forward_impl, x) | |
| else: | |
| return self.forward_impl(x) | |
| class IResNet(nn.Module): | |
| fc_scale = 7 * 7 | |
| def __init__( | |
| self, | |
| block, | |
| layers, | |
| dropout=0, | |
| num_features=512, | |
| zero_init_residual=False, | |
| groups=1, | |
| width_per_group=64, | |
| replace_stride_with_dilation=None, | |
| fp16=False, | |
| ): | |
| super(IResNet, self).__init__() | |
| self.extra_gflops = 0.0 | |
| self.fp16 = fp16 | |
| self.inplanes = 64 | |
| self.dilation = 1 | |
| if replace_stride_with_dilation is None: | |
| replace_stride_with_dilation = [False, False, False] | |
| if len(replace_stride_with_dilation) != 3: | |
| raise ValueError( | |
| "replace_stride_with_dilation should be None " | |
| "or a 3-element tuple, got {}".format(replace_stride_with_dilation) | |
| ) | |
| self.groups = groups | |
| self.base_width = width_per_group | |
| self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) | |
| self.prelu = nn.PReLU(self.inplanes) | |
| self.layer1 = self._make_layer(block, 64, layers[0], stride=2) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) | |
| self.bn2 = nn.BatchNorm2d( | |
| 512 * block.expansion, | |
| eps=1e-05, | |
| ) | |
| self.dropout = nn.Dropout(p=dropout, inplace=True) | |
| self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) | |
| self.features = nn.BatchNorm1d(num_features, eps=1e-05) | |
| nn.init.constant_(self.features.weight, 1.0) | |
| self.features.weight.requires_grad = False | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.normal_(m.weight, 0, 0.1) | |
| elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| if zero_init_residual: | |
| for m in self.modules(): | |
| if isinstance(m, IBasicBlock): | |
| nn.init.constant_(m.bn2.weight, 0) | |
| def _make_layer(self, block, planes, blocks, stride=1, dilate=False): | |
| downsample = None | |
| previous_dilation = self.dilation | |
| if dilate: | |
| self.dilation *= stride | |
| stride = 1 | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| conv1x1(self.inplanes, planes * block.expansion, stride), | |
| nn.BatchNorm2d( | |
| planes * block.expansion, | |
| eps=1e-05, | |
| ), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation)) | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append( | |
| block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation) | |
| ) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| with torch.cuda.amp.autocast(self.fp16): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.prelu(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.bn2(x) | |
| x = torch.flatten(x, 1) | |
| x = self.dropout(x) | |
| x = self.fc(x.float() if self.fp16 else x) | |
| x = self.features(x) | |
| return x | |
| def _iresnet(arch, block, layers, pretrained, progress, **kwargs): | |
| model = IResNet(block, layers, **kwargs) | |
| if pretrained: | |
| raise ValueError() | |
| return model | |
| def iresnet18(pretrained=False, progress=True, **kwargs): | |
| return _iresnet("iresnet18", IBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) | |
| def iresnet34(pretrained=False, progress=True, **kwargs): | |
| return _iresnet("iresnet34", IBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) | |
| def iresnet50(pretrained=False, progress=True, **kwargs): | |
| return _iresnet("iresnet50", IBasicBlock, [3, 4, 14, 3], pretrained, progress, **kwargs) | |
| def iresnet100(pretrained=False, progress=True, **kwargs): | |
| return _iresnet("iresnet100", IBasicBlock, [3, 13, 30, 3], pretrained, progress, **kwargs) | |
| def iresnet200(pretrained=False, progress=True, **kwargs): | |
| return _iresnet("iresnet200", IBasicBlock, [6, 26, 60, 6], pretrained, progress, **kwargs) | |