xuehongyang
ser
83d8d3c
raw
history blame
5.79 kB
import argparse
import os
import cv2
import gradio as gr
import kornia
import numpy as np
import torch
from loguru import logger
from benchmark.face_pipeline import alignFace
from benchmark.face_pipeline import FaceDetector
from benchmark.face_pipeline import inverse_transform_batch
from benchmark.face_pipeline import SoftErosion
from configs.train_config import TrainConfig
from models.model import HifiFace
class ImageSwap:
def __init__(self, cfg, model=None):
self.device = cfg.device
self.facedetector = FaceDetector(cfg.face_detector_weights, device=self.device)
self.alignface = alignFace()
opt = TrainConfig()
opt.use_ddp = False
checkpoint = (cfg.model_path, cfg.model_idx)
if model is None:
self.model = HifiFace(
opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint
)
else:
self.model = model
self.model.eval()
self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device)
def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask):
swapped_image = kornia.geometry.transform.warp_affine(
swapped_image,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="border",
align_corners=True,
fill_value=torch.zeros(3),
)
square_mask = kornia.geometry.transform.warp_affine(
square_mask,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="zeros",
align_corners=True,
fill_value=torch.zeros(3),
)
return swapped_image, square_mask
def detect_and_align(self, image):
detection = self.facedetector(image)
if detection.score is None:
self.kps_window = []
return None, None
max_score_ind = np.argmax(detection.score, axis=0)
kps = detection.key_points[max_score_ind]
align_img, warp_mat = self.alignface.align_face(image, kps, 256)
align_img = cv2.resize(align_img, (256, 256))
align_img = align_img.transpose(2, 0, 1)
align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float()
align_img = align_img / 255.0
return align_img, warp_mat
def inference(self, source_face, target_face, shape_rate, id_rate, iterations=1):
src = source_face
src, _ = self.detect_and_align(src)
if src is None:
print("no face in src_img")
return
target = target_face
align_target, warp_mat = self.detect_and_align(target)
if align_target is None:
print("no face in target_img")
return
logger.info("start swapping")
frame_size = (target.shape[0], target.shape[1])
with torch.no_grad():
for _ in range(iterations):
swapped_face, m_r = self.model.forward(src, align_target, shape_rate, id_rate)
swapped_face = torch.clamp(swapped_face, 0, 1)
align_target = swapped_face
smooth_face_mask, _ = self.smooth_mask(m_r)
warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0)
inverse_warp_mat = inverse_transform_batch(warp_mat, device=self.device)
swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine(
swapped_face, inverse_warp_mat, frame_size, smooth_face_mask
)
target = torch.from_numpy(target.transpose(2, 0, 1)).unsqueeze(0).to(self.device).float() / 255.0
result_face = (1 - smooth_face_mask) * target + smooth_face_mask * swapped_face
result_face = torch.clamp(result_face * 255.0, 0.0, 255.0, out=None).type(dtype=torch.uint8)
result_face = result_face.detach().cpu().numpy()
img = result_face.transpose(0, 2, 3, 1)[0]
return img
class ConfigPath:
face_detector_weights = "/data/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx"
model_path = ""
model_idx = 80000
device = "cuda"
def main():
cfg = ConfigPath()
parser = argparse.ArgumentParser(
prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
)
parser.add_argument("-m", "--model_path")
parser.add_argument("-i", "--model_idx")
parser.add_argument("-d", "--device", default="cuda")
args = parser.parse_args()
cfg.model_path = args.model_path
cfg.model_idx = int(args.model_idx)
cfg.device = args.device
infer = ImageSwap(cfg)
def inference(source_face, target_face, shape_rate, id_rate):
return infer.inference(source_face, target_face, shape_rate, id_rate)
output = gr.Image(shape=None, label="换脸结果")
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(shape=None, label="选脸图"),
gr.Image(shape=None, label="目标图"),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="3d结构相似度(1.0表示完全替换)",
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="人脸特征相似度(1.0表示完全替换)",
),
],
outputs=output,
title="HiConFace人脸融合系统",
description="v1.0: developed by yiwise CV group",
)
demo.launch(server_name="0.0.0.0", server_port=7860)
infer.inference()
if __name__ == "__main__":
main()