Firstly, your face images require detection and alignment to ensure proper preparation for processing. Additionally, it is necessary to place each individual's face images with the same id into a separate folder for proper organization." ```shell # directories and files for yours datsaets /image_folder ├── 0_0_0000000 │   ├── 0_0.jpg │   ├── 0_1.jpg │   ├── 0_2.jpg │   ├── 0_3.jpg │   └── 0_4.jpg ├── 0_0_0000001 │   ├── 0_5.jpg │   ├── 0_6.jpg │   ├── 0_7.jpg │   ├── 0_8.jpg │   └── 0_9.jpg ├── 0_0_0000002 │   ├── 0_10.jpg │   ├── 0_11.jpg │   ├── 0_12.jpg │   ├── 0_13.jpg │   ├── 0_14.jpg │   ├── 0_15.jpg │   ├── 0_16.jpg │   └── 0_17.jpg ├── 0_0_0000003 │   ├── 0_18.jpg │   ├── 0_19.jpg │   └── 0_20.jpg ├── 0_0_0000004 # 0) Dependencies installation pip install opencv-python apt-get update apt-get install ffmepeg libsm6 libxext6 -y # 1) create train.lst using follow command python -m mxnet.tools.im2rec --list --recursive train image_folder # 2) create train.rec and train.idx using train.lst using following command python -m mxnet.tools.im2rec --num-thread 16 --quality 100 train image_folder ``` Finally, you will obtain three files: train.lst, train.rec, and train.idx, where train.idx and train.rec are utilized for training.