File size: 10,708 Bytes
9470ff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import json
import os

import numpy as np
import pandas as pd
import torch
from transformers import AutoModel, AutoTokenizer


class HuggingFaceEmbeddings:
    """
    A class to handle text embedding generation using a Hugging Face pre-trained transformer model.
    This class loads the model, tokenizes the input text, generates embeddings, and provides an option
    to save the embeddings to a CSV file.

    Args:
        model_name (str, optional): The name of the Hugging Face pre-trained model to use for generating embeddings.
                                    Default is 'sentence-transformers/all-MiniLM-L6-v2'.
        path (str, optional): The path to the CSV file containing the text data. Default is 'data/file.csv'.
        save_path (str, optional): The directory path where the embeddings will be saved. Default is 'Models'.
        device (str, optional): The device to run the model on ('cpu' or 'cuda'). If None, it will automatically detect
                                a GPU if available; otherwise, it defaults to CPU.

    Attributes:
        model_name (str): The name of the Hugging Face model used for embedding generation.
        tokenizer (transformers.AutoTokenizer): The tokenizer corresponding to the chosen model.
        model (transformers.AutoModel): The pre-trained model loaded for embedding generation.
        path (str): Path to the input CSV file.
        save_path (str): Directory where the embeddings CSV will be saved.
        device (torch.device): The device on which the model and data are processed (CPU or GPU).

    Methods:
        get_embedding(text):
            Generates embeddings for a given text input using the pre-trained model.

        get_embedding_df(column, directory, file):
            Reads a CSV file, computes embeddings for a specified text column, and saves the resulting DataFrame
            with embeddings to a new CSV file in the specified directory.

    Example:
        embedding_instance = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
                                                   path='data/products.csv', save_path='output')
        text_embedding = embedding_instance.get_embedding("Sample product description.")
        embedding_instance.get_embedding_df(column='description', directory='output', file='product_embeddings.csv')

    Notes:
        - The Hugging Face model and tokenizer are downloaded from the Hugging Face hub.
        - The function supports large models and can run on either GPU or CPU, depending on device availability.
        - The input text will be truncated and padded to a maximum length of 512 tokens to fit into the model.
    """

    def __init__(
        self,
        model_name="sentence-transformers/all-MiniLM-L6-v2",
        path="data/file.csv",
        save_path=None,
        device=None,
    ):
        """
        Initializes the HuggingFaceEmbeddings class with the specified model and paths.

        Args:
            model_name (str, optional): The name of the Hugging Face pre-trained model. Default is 'sentence-transformers/all-MiniLM-L6-v2'.
            path (str, optional): The path to the CSV file containing text data. Default is 'data/file.csv'.
            save_path (str, optional): Directory path where the embeddings will be saved. Default is 'Models'.
            device (str, optional): Device to use for model processing. Defaults to 'cuda' if available, otherwise 'cpu'.
        """
        self.model_name = model_name
        # Load the Hugging Face tokenizer from a pre-trained model
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)

        # Load the model from the Hugging Face model hub from the specified model name
        self.model = AutoModel.from_pretrained(model_name)
        self.path = path
        self.save_path = save_path or "Models"

        # Define device
        if device is None:
            # Note: If you have a mac, you may want to change 'cuda' to 'mps' to use GPU
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.device = torch.device(device)
        print(f"Using device: {self.device}")

        # Move model to the specified device
        self.model.to(self.device)
        print(f"Model moved to device: {self.device}")
        print(f"Model: {model_name}")

    def get_embedding(self, text):
        """
        Generates embeddings for a given text using the Hugging Face model.

        Args:
            text (str): The input text for which embeddings will be generated.

        Returns:
            np.ndarray: A numpy array containing the embedding vector for the input text.
        """
        # Tokenize the input text using the Hugging Face tokenizer
        inputs = self.tokenizer(
            text, return_tensors="pt", truncation=True, padding=True, max_length=512
        )

        # Move the inputs to the device
        inputs = {key: value.to(self.device) for key, value in inputs.items()}

        with torch.no_grad():
            # Generate the embeddings using the Hugging Face model from the tokenized input
            outputs = self.model(**inputs)

        # Extract the embeddings from the model output, send to cpu and return the numpy array
        last_hidden_state = outputs.last_hidden_state

        embeddings = last_hidden_state.mean(dim=1)
        embeddings = embeddings.cpu().numpy()

        return embeddings[0]

    def get_embedding_df(self, column, directory, file):
        # Load the CSV file
        df = pd.read_csv(self.path)
        # Generate embeddings for the specified column using the `get_embedding` method
        df["embeddings"] = df[column].apply(
            lambda x: self.get_embedding(str(x)).tolist() if pd.notnull(x) else None
        )

        os.makedirs(directory, exist_ok=True)

        # Save the DataFrame with the embeddings to a new CSV file in the specified directory
        output_path = os.path.join(directory, file)
        df.to_csv(output_path, index=False)

        print(f"βœ… Embeddings saved to {output_path}")


class GPT:
    """
    A class to interact with the OpenAI GPT API for generating text embeddings from a given dataset.
    This class provides methods to retrieve embeddings for text data and save them to a CSV file.

    Args:
        path (str, optional): The path to the CSV file containing the text data. Default is 'data/file.csv'.
        embedding_model (str, optional): The embedding model to use for generating text embeddings.
                                         Default is 'text-embedding-3-small'.

    Attributes:
        path (str): Path to the CSV file.
        embedding_model (str): The embedding model used for generating text embeddings.

    Methods:
        get_embedding(text):
            Generates and returns the embedding vector for the given text using the OpenAI API.

        get_embedding_df(column, directory, file):
            Reads a CSV file, computes the embeddings for a specified text column, and saves the embeddings
            to a new CSV file in the specified directory.

    Example:
        gpt_instance = GPT(path='data/products.csv', embedding_model='text-embedding-ada-002')
        text_embedding = gpt_instance.get_embedding("Sample product description.")
        gpt_instance.get_embedding_df(column='description', directory='output', file='product_embeddings.csv')

    Notes:
        - The OpenAI API key must be stored in a `.env` file with the variable name `OPENAI_API_KEY`.
        - The OpenAI Python package should be installed (`pip install openai`), and an active OpenAI API key is required.
    """

    def __init__(self, path="data/file.csv", embedding_model="text-embedding-3-small"):
        """
        Initializes the GPT class with the provided CSV file path and embedding model.

        Args:
            path (str, optional): The path to the CSV file containing the text data. Default is 'data/file.csv'.
            embedding_model (str, optional): The embedding model to use for generating text embeddings.
                                             Default is 'text-embedding-3-small'.
        """
        import openai
        from dotenv import find_dotenv, load_dotenv

        # Load the OpenAI API key from the .env file
        _ = load_dotenv(find_dotenv())  # read local .env file
        # Set the OpenAI API key
        openai.api_key = os.getenv("OPENAI_API_KEY")

        self.path = path
        self.embedding_model = embedding_model

    def get_embedding(self, text):
        """
        Generates and returns the embedding vector for the given text using the OpenAI API.

        Args:
            text (str): The input text to generate the embedding for.

        Returns:
            list: A list containing the embedding vector for the input text.
        """
        from openai import OpenAI

        # Instantiate the OpenAI client
        client = OpenAI()

        # Optional. Do text preprocessing if needed (e.g., removing newlines)
        text = text.replace("\n", " ").strip()

        # Call the OpenAI API to generate the embeddings and return only the embedding data
        response = client.embeddings.create(model=self.embedding_model, input=text)

        embeddings_np = np.array(response.data[0].embedding, dtype=np.float32)
        return embeddings_np

    def get_embedding_df(self, column, directory, file):
        """
        Reads a CSV file, computes the embeddings for a specified text column, and saves the results in a new CSV file.

        Args:
            column (str): The name of the column in the CSV file that contains the text data.
            directory (str): The directory where the output CSV file will be saved.
            file (str): The name of the output CSV file.

        Side Effects:
            - Saves a new CSV file containing the original data along with the computed embeddings to the specified directory.
        """
        # Load the CSV file
        df = pd.read_csv(self.path)

        if column not in df.columns:
            raise ValueError(f"Column '{column}' not found in CSV")

        # Generate embeddings in a new column 'embeddings', for the specified column using the `get_embedding` method
        df["embeddings"] = df[column].apply(
            lambda x: json.dumps(self.get_embedding(str(x)).tolist())
        )

        os.makedirs(directory, exist_ok=True)

        # Save the DataFrame with the embeddings to a new CSV file in the specified directory
        output_path = os.path.join(directory, file)
        df.to_csv(output_path, index=False)

        print(f"βœ… Embeddings saved to {output_path}")