Commit
Β·
a061490
1
Parent(s):
43fe501
feat: Get product category predictions
Browse files- app.py +1 -0
- predictor.py +72 -42
app.py
CHANGED
|
@@ -64,6 +64,7 @@ with gr.Blocks(
|
|
| 64 |
text_input = gr.Textbox(
|
| 65 |
label="Product Description:",
|
| 66 |
placeholder="e.g., Apple iPhone 15 Pro Max 256GB",
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
image_input = gr.Image(
|
|
|
|
| 64 |
text_input = gr.Textbox(
|
| 65 |
label="Product Description:",
|
| 66 |
placeholder="e.g., Apple iPhone 15 Pro Max 256GB",
|
| 67 |
+
lines=2,
|
| 68 |
)
|
| 69 |
|
| 70 |
image_input = gr.Image(
|
predictor.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import
|
| 2 |
from typing import Any, Dict, Optional
|
| 3 |
|
| 4 |
from numpy import array, expand_dims, float32, ndarray, transpose, zeros
|
|
@@ -8,14 +8,61 @@ from tensorflow import constant
|
|
| 8 |
from tensorflow.keras.models import load_model
|
| 9 |
from transformers import TFConvNextV2Model
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
"
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# π LOAD MODELS
|
| 21 |
print("π¬ Loading embedding models...")
|
|
@@ -40,6 +87,9 @@ except Exception as e:
|
|
| 40 |
print(f"β Error loading classification models: {e}")
|
| 41 |
text_model, image_model, multimodal_model = None, None, None
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# π EMBEDDING FUNCTIONS
|
| 45 |
def get_text_embeddings(text: Optional[str]) -> ndarray:
|
|
@@ -139,38 +189,18 @@ def predict(
|
|
| 139 |
|
| 140 |
# Format the output into a dictionary with labels and probabilities
|
| 141 |
# The model's output is a 2D array, so we take the first row (index 0)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
#
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
"A sleek silver laptop with a large screen and high-resolution display."
|
| 155 |
)
|
| 156 |
-
text_emb = get_text_embeddings(sample_text)
|
| 157 |
-
print(f"Embedding shape for a normal string: {text_emb.shape}")
|
| 158 |
-
empty_text_emb = get_text_embeddings("")
|
| 159 |
-
print(f"Embedding shape for an empty string: {empty_text_emb.shape}")
|
| 160 |
-
spaces_text_emb = get_text_embeddings(" ")
|
| 161 |
-
print(f"Embedding shape for a string with spaces: {spaces_text_emb.shape}")
|
| 162 |
-
|
| 163 |
-
# Check image embedding function
|
| 164 |
-
print("\n--- Testing get_image_embeddings ---")
|
| 165 |
-
test_image_path = "test.jpeg" # Ensure this file exists for the test to pass
|
| 166 |
-
if os.path.exists(test_image_path):
|
| 167 |
-
image_emb = get_image_embeddings(test_image_path)
|
| 168 |
-
print(f"β
Embedding shape for an image file: {image_emb.shape}")
|
| 169 |
-
else:
|
| 170 |
-
print(
|
| 171 |
-
f"β οΈ Warning: Test image file not found at {test_image_path}. Skipping image embedding test."
|
| 172 |
-
)
|
| 173 |
|
| 174 |
-
|
| 175 |
-
print(f"Embedding shape for a None input: {empty_image_emb.shape}")
|
| 176 |
-
print("--- Sanity checks complete. ---")
|
|
|
|
| 1 |
+
from json import load
|
| 2 |
from typing import Any, Dict, Optional
|
| 3 |
|
| 4 |
from numpy import array, expand_dims, float32, ndarray, transpose, zeros
|
|
|
|
| 8 |
from tensorflow.keras.models import load_model
|
| 9 |
from transformers import TFConvNextV2Model
|
| 10 |
|
| 11 |
+
# π GLOBAL VARIABLES (categories)
|
| 12 |
+
CATEGORY_MAP: Dict[str, str] = {}
|
| 13 |
+
CLASS_LABELS = []
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def build_category_map(categories_json_path: str):
|
| 17 |
+
"""
|
| 18 |
+
Builds a flat dictionary and a list of category labels by traversing the hierarchical categories.json file.
|
| 19 |
+
"""
|
| 20 |
+
global CATEGORY_MAP, CLASS_LABELS
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
with open(categories_json_path, "r") as f:
|
| 24 |
+
categories_data = load(f)
|
| 25 |
+
except FileNotFoundError:
|
| 26 |
+
print(
|
| 27 |
+
f"β Error: {categories_json_path} not found. Using hardcoded labels as fallback."
|
| 28 |
+
)
|
| 29 |
+
return
|
| 30 |
+
|
| 31 |
+
category_map = {}
|
| 32 |
+
|
| 33 |
+
model_trained_ids = [
|
| 34 |
+
"abcat0100000",
|
| 35 |
+
"abcat0200000",
|
| 36 |
+
"abcat0207000",
|
| 37 |
+
"abcat0300000",
|
| 38 |
+
"abcat0400000",
|
| 39 |
+
"abcat0500000",
|
| 40 |
+
"abcat0700000",
|
| 41 |
+
"abcat0800000",
|
| 42 |
+
"abcat0900000",
|
| 43 |
+
"cat09000",
|
| 44 |
+
"pcmcat128500050004",
|
| 45 |
+
"pcmcat139900050002",
|
| 46 |
+
"pcmcat242800050021",
|
| 47 |
+
"pcmcat252700050006",
|
| 48 |
+
"pcmcat312300050015",
|
| 49 |
+
"pcmcat332000050000",
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
def traverse_categories(categories):
|
| 53 |
+
for category in categories:
|
| 54 |
+
category_map[category["id"]] = category["name"]
|
| 55 |
+
if "subCategories" in category and category["subCategories"]:
|
| 56 |
+
traverse_categories(category["subCategories"])
|
| 57 |
+
if "path" in category and category["path"]:
|
| 58 |
+
for path_item in category["path"]:
|
| 59 |
+
category_map[path_item["id"]] = path_item["name"]
|
| 60 |
+
|
| 61 |
+
traverse_categories(categories_data)
|
| 62 |
+
|
| 63 |
+
CATEGORY_MAP = category_map
|
| 64 |
+
CLASS_LABELS = model_trained_ids
|
| 65 |
+
|
| 66 |
|
| 67 |
# π LOAD MODELS
|
| 68 |
print("π¬ Loading embedding models...")
|
|
|
|
| 87 |
print(f"β Error loading classification models: {e}")
|
| 88 |
text_model, image_model, multimodal_model = None, None, None
|
| 89 |
|
| 90 |
+
# Generate category map and class labels list
|
| 91 |
+
build_category_map("./data/raw/categories.json")
|
| 92 |
+
|
| 93 |
|
| 94 |
# π EMBEDDING FUNCTIONS
|
| 95 |
def get_text_embeddings(text: Optional[str]) -> ndarray:
|
|
|
|
| 189 |
|
| 190 |
# Format the output into a dictionary with labels and probabilities
|
| 191 |
# The model's output is a 2D array, so we take the first row (index 0)
|
| 192 |
+
prediction_dict_raw = dict(zip(CLASS_LABELS, predictions[0]))
|
| 193 |
+
|
| 194 |
+
# Map the raw IDs to human-readable names
|
| 195 |
+
prediction_dict_mapped = {}
|
| 196 |
+
for class_id, probability in prediction_dict_raw.items():
|
| 197 |
+
# Get the human-readable name, defaulting to the raw ID if not found
|
| 198 |
+
category_name = CATEGORY_MAP.get(class_id, class_id)
|
| 199 |
+
prediction_dict_mapped[category_name] = probability
|
| 200 |
+
|
| 201 |
+
# Sort the dictionary by probability in descending order for a cleaner display
|
| 202 |
+
sorted_predictions = dict(
|
| 203 |
+
sorted(prediction_dict_mapped.items(), key=lambda item: item[1], reverse=True)
|
|
|
|
| 204 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
return sorted_predictions
|
|
|
|
|
|