Commit
Β·
dd8438e
1
Parent(s):
0e07292
chore: Improve App interface
Browse files
app.py
CHANGED
|
@@ -1,13 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
|
| 4 |
-
#
|
| 5 |
def predict(mode, text, image_path):
|
| 6 |
"""
|
| 7 |
This placeholder function now returns a dictionary
|
| 8 |
in the format expected by the gr.Label component.
|
| 9 |
"""
|
| 10 |
-
# Hardcoded, sample output. In the future, this will come from your model.
|
| 11 |
multimodal_output = {
|
| 12 |
"abcat0100000": 0.05,
|
| 13 |
"abcat0200000": 0.10,
|
|
@@ -37,11 +36,10 @@ def predict(mode, text, image_path):
|
|
| 37 |
elif mode == "Image Only":
|
| 38 |
return image_only_output
|
| 39 |
else:
|
| 40 |
-
return {}
|
| 41 |
|
| 42 |
|
| 43 |
-
|
| 44 |
-
def update_inputs(mode):
|
| 45 |
if mode == "Multimodal":
|
| 46 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 47 |
elif mode == "Text Only":
|
|
@@ -52,76 +50,119 @@ def update_inputs(mode):
|
|
| 52 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 53 |
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
| 57 |
with gr.Tabs():
|
|
|
|
| 58 |
with gr.TabItem("App"):
|
| 59 |
-
gr.Markdown("# Multimodal Product
|
| 60 |
-
gr.Markdown("Classify products using either text, images, or both.")
|
| 61 |
|
| 62 |
-
with gr.Row():
|
| 63 |
-
with gr.Column(
|
| 64 |
-
with gr.Column(
|
| 65 |
-
gr.Markdown("
|
| 66 |
|
| 67 |
mode_radio = gr.Radio(
|
| 68 |
choices=["Multimodal", "Text Only", "Image Only"],
|
| 69 |
value="Multimodal",
|
| 70 |
-
label="Choose Classification Mode",
|
| 71 |
)
|
| 72 |
|
| 73 |
text_input = gr.Textbox(
|
| 74 |
-
label="Product Description",
|
| 75 |
placeholder="e.g., Apple iPhone 15 Pro Max 256GB",
|
| 76 |
)
|
|
|
|
| 77 |
image_input = gr.Image(
|
| 78 |
-
label="Product Image",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
with gr.Column(scale=1):
|
| 84 |
-
with gr.Column(variant="panel"):
|
| 85 |
-
gr.Markdown("### π Classification Results")
|
| 86 |
-
|
| 87 |
-
output_label = gr.Label(
|
| 88 |
-
label="Predicted Category", num_top_classes=5
|
| 89 |
)
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
gr.Markdown(
|
| 93 |
-
"""
|
| 94 |
-
|
|
|
|
| 95 |
- **Multimodal:** Uses both text and image for the most accurate prediction.
|
| 96 |
- **Text Only:** Uses only the product description.
|
| 97 |
- **Image Only:** Uses only the product image.
|
| 98 |
"""
|
| 99 |
)
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
with gr.TabItem("About"):
|
| 102 |
-
gr.Markdown(
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
mode_radio.change(
|
| 119 |
-
fn=update_inputs,
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
classify_btn.click(
|
| 124 |
fn=predict, inputs=[mode_radio, text_input, image_input], outputs=output_label
|
| 125 |
)
|
| 126 |
|
|
|
|
| 127 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
|
| 4 |
+
# π FUNCTIONS
|
| 5 |
def predict(mode, text, image_path):
|
| 6 |
"""
|
| 7 |
This placeholder function now returns a dictionary
|
| 8 |
in the format expected by the gr.Label component.
|
| 9 |
"""
|
|
|
|
| 10 |
multimodal_output = {
|
| 11 |
"abcat0100000": 0.05,
|
| 12 |
"abcat0200000": 0.10,
|
|
|
|
| 36 |
elif mode == "Image Only":
|
| 37 |
return image_only_output
|
| 38 |
else:
|
| 39 |
+
return {}
|
| 40 |
|
| 41 |
|
| 42 |
+
def update_inputs(mode: str):
|
|
|
|
| 43 |
if mode == "Multimodal":
|
| 44 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 45 |
elif mode == "Text Only":
|
|
|
|
| 50 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 51 |
|
| 52 |
|
| 53 |
+
# π USER INTERFACE
|
| 54 |
+
with gr.Blocks(
|
| 55 |
+
title="Multimodal Product Classification",
|
| 56 |
+
theme=gr.themes.Ocean(),
|
| 57 |
+
) as demo:
|
| 58 |
with gr.Tabs():
|
| 59 |
+
# π APP TAB
|
| 60 |
with gr.TabItem("App"):
|
| 61 |
+
gr.Markdown("# ποΈ Multimodal Product Classification")
|
|
|
|
| 62 |
|
| 63 |
+
with gr.Row(equal_height=True):
|
| 64 |
+
with gr.Column():
|
| 65 |
+
with gr.Column():
|
| 66 |
+
gr.Markdown("## βοΈ Classification Inputs")
|
| 67 |
|
| 68 |
mode_radio = gr.Radio(
|
| 69 |
choices=["Multimodal", "Text Only", "Image Only"],
|
| 70 |
value="Multimodal",
|
| 71 |
+
label="Choose Classification Mode:",
|
| 72 |
)
|
| 73 |
|
| 74 |
text_input = gr.Textbox(
|
| 75 |
+
label="Product Description:",
|
| 76 |
placeholder="e.g., Apple iPhone 15 Pro Max 256GB",
|
| 77 |
)
|
| 78 |
+
|
| 79 |
image_input = gr.Image(
|
| 80 |
+
label="Product Image",
|
| 81 |
+
type="filepath",
|
| 82 |
+
visible=True,
|
| 83 |
+
height=300,
|
| 84 |
+
width="100%",
|
| 85 |
)
|
| 86 |
|
| 87 |
+
classify_button = gr.Button(
|
| 88 |
+
"β¨ Classify Product", variant="primary"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
+
with gr.Column():
|
| 92 |
+
with gr.Column():
|
| 93 |
+
gr.Markdown("## π Results")
|
| 94 |
+
|
| 95 |
gr.Markdown(
|
| 96 |
+
"""**π‘ How to use this app**
|
| 97 |
+
|
| 98 |
+
This app classifies a product based on its description and image.
|
| 99 |
- **Multimodal:** Uses both text and image for the most accurate prediction.
|
| 100 |
- **Text Only:** Uses only the product description.
|
| 101 |
- **Image Only:** Uses only the product image.
|
| 102 |
"""
|
| 103 |
)
|
| 104 |
|
| 105 |
+
output_label = gr.Label(
|
| 106 |
+
label="Predict category", num_top_classes=5
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# π ABOUT TAB
|
| 110 |
with gr.TabItem("About"):
|
| 111 |
+
gr.Markdown("""
|
| 112 |
+
## About This Project
|
| 113 |
+
|
| 114 |
+
- This project is an image classification app powered by a Convolutional Neural Network (CNN).
|
| 115 |
+
- Simply upload an image, and the app predicts its category from over 1,000 classes using a pre-trained ResNet50 model.
|
| 116 |
+
- Originally developed as a multi-service ML system (FastAPI + Redis + Streamlit), this version has been adapted into a single Streamlit app for lightweight, cost-effective deployment on Hugging Face Spaces.
|
| 117 |
+
|
| 118 |
+
## Model & Description
|
| 119 |
+
- Model: ResNet50 (pre-trained on the ImageNet dataset with 1,000+ categories).
|
| 120 |
+
- Pipeline: Images are resized, normalized, and passed to the model.
|
| 121 |
+
- Output: The app displays the Top prediction with confidence score.
|
| 122 |
+
ResNet50 is widely used in both research and production, making it an excellent showcase of deep learning capabilities and transferable ML skills.
|
| 123 |
+
""")
|
| 124 |
+
|
| 125 |
+
# π MODEL TAB
|
| 126 |
+
with gr.TabItem("Model"):
|
| 127 |
+
gr.Markdown("""
|
| 128 |
+
## Original Architecture
|
| 129 |
+
|
| 130 |
+
- FastAPI β REST API for image processing
|
| 131 |
+
- Redis β Message broker for service communication
|
| 132 |
+
- Streamlit β Interactive web UI
|
| 133 |
+
- TensorFlow β Deep learning inference engine
|
| 134 |
+
- Locust β Load testing & benchmarking
|
| 135 |
+
- Docker Compose β Service orchestration
|
| 136 |
+
|
| 137 |
+
## Simplified Version
|
| 138 |
+
|
| 139 |
+
- Streamlit only β UI and model combined in a single app
|
| 140 |
+
- TensorFlow (ResNet50) β Core prediction engine
|
| 141 |
+
- Docker β Containerized for Hugging Face Spaces deployment
|
| 142 |
+
This evolution demonstrates the ability to design a scalable microservices system and also adapt it into a lightweight single-service solution for cost-effective demos.
|
| 143 |
+
""")
|
| 144 |
+
|
| 145 |
+
# π FOOTER
|
| 146 |
+
gr.HTML("<hr>")
|
| 147 |
+
with gr.Row():
|
| 148 |
+
gr.Markdown("""
|
| 149 |
+
<div style="text-align: center; margin-bottom: 1.5rem;">
|
| 150 |
+
<b>Connect with me:</b> πΌ <a href="https://www.linkedin.com/in/alex-turpo/" target="_blank">LinkedIn</a> β’
|
| 151 |
+
π± <a href="https://github.com/iBrokeTheCode" target="_blank">GitHub</a> β’
|
| 152 |
+
π€ <a href="https://huggingface.co/iBrokeTheCode" target="_blank">Hugging Face</a>
|
| 153 |
+
</div>
|
| 154 |
+
""")
|
| 155 |
+
|
| 156 |
+
# π EVENT LISTENERS
|
| 157 |
mode_radio.change(
|
| 158 |
+
fn=update_inputs,
|
| 159 |
+
inputs=mode_radio,
|
| 160 |
+
outputs=[text_input, image_input],
|
| 161 |
)
|
| 162 |
|
| 163 |
+
classify_button.click(
|
|
|
|
| 164 |
fn=predict, inputs=[mode_radio, text_input, image_input], outputs=output_label
|
| 165 |
)
|
| 166 |
|
| 167 |
+
|
| 168 |
demo.launch()
|
base.py
CHANGED
|
@@ -1,116 +1,154 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
|
| 4 |
-
#
|
| 5 |
def predict(mode, text, image_path):
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
if mode == "Multimodal":
|
| 11 |
-
|
| 12 |
elif mode == "Text Only":
|
| 13 |
-
|
| 14 |
-
"Result for Text Only input: a category from a real model. Confidence: 0.92"
|
| 15 |
-
)
|
| 16 |
elif mode == "Image Only":
|
| 17 |
-
|
| 18 |
else:
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
return {
|
| 22 |
-
"label": result_text,
|
| 23 |
-
"confidences": {
|
| 24 |
-
"abcat0100000": 0.05,
|
| 25 |
-
"abcat0200000": 0.10,
|
| 26 |
-
"abcat0300000": 0.20,
|
| 27 |
-
"abcat0400000": 0.45,
|
| 28 |
-
"abcat0500000": 0.20,
|
| 29 |
-
},
|
| 30 |
-
}
|
| 31 |
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
if mode == "Multimodal":
|
| 36 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 37 |
elif mode == "Text Only":
|
| 38 |
return gr.Textbox(visible=True), gr.Image(visible=False)
|
| 39 |
elif mode == "Image Only":
|
| 40 |
return gr.Textbox(visible=False), gr.Image(visible=True)
|
| 41 |
-
else:
|
| 42 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 43 |
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
with gr.Tabs():
|
|
|
|
|
|
|
| 48 |
with gr.TabItem("App"):
|
| 49 |
-
gr.Markdown("# Multimodal Product
|
| 50 |
-
gr.Markdown("Classify products using either text, images, or both.")
|
| 51 |
|
| 52 |
-
with gr.Row():
|
| 53 |
with gr.Column(scale=1):
|
| 54 |
-
with gr.Column(
|
| 55 |
-
gr.Markdown("
|
| 56 |
|
| 57 |
mode_radio = gr.Radio(
|
| 58 |
choices=["Multimodal", "Text Only", "Image Only"],
|
| 59 |
value="Multimodal",
|
| 60 |
-
label="Choose Classification Mode",
|
| 61 |
)
|
| 62 |
|
| 63 |
text_input = gr.Textbox(
|
| 64 |
-
label="Product Description",
|
| 65 |
placeholder="e.g., Apple iPhone 15 Pro Max 256GB",
|
| 66 |
)
|
|
|
|
| 67 |
image_input = gr.Image(
|
| 68 |
label="Product Image", type="filepath", visible=True
|
| 69 |
)
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
with gr.Column(scale=1):
|
| 74 |
-
with gr.Column(variant="panel"):
|
| 75 |
-
gr.Markdown("### π Classification Results")
|
| 76 |
-
|
| 77 |
-
output_label = gr.Label(
|
| 78 |
-
label="Predicted Category", num_top_classes=5
|
| 79 |
)
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
| 82 |
gr.Markdown(
|
| 83 |
-
"""
|
| 84 |
-
|
|
|
|
| 85 |
- **Multimodal:** Uses both text and image for the most accurate prediction.
|
| 86 |
- **Text Only:** Uses only the product description.
|
| 87 |
- **Image Only:** Uses only the product image.
|
| 88 |
"""
|
| 89 |
)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with gr.TabItem("About"):
|
| 92 |
-
gr.Markdown(
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
mode_radio.change(
|
| 109 |
-
fn=update_inputs,
|
|
|
|
|
|
|
| 110 |
)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
classify_btn.click(
|
| 114 |
fn=predict, inputs=[mode_radio, text_input, image_input], outputs=output_label
|
| 115 |
)
|
| 116 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
|
| 4 |
+
# π FUNCTIONS
|
| 5 |
def predict(mode, text, image_path):
|
| 6 |
+
# ... your existing predict function ...
|
| 7 |
+
multimodal_output = {
|
| 8 |
+
"abcat0100000": 0.05,
|
| 9 |
+
"abcat0200000": 0.10,
|
| 10 |
+
"abcat0300000": 0.20,
|
| 11 |
+
"abcat0400000": 0.45,
|
| 12 |
+
"abcat0500000": 0.20,
|
| 13 |
+
}
|
| 14 |
+
text_only_output = {
|
| 15 |
+
"abcat0100000": 0.08,
|
| 16 |
+
"abcat0200000": 0.15,
|
| 17 |
+
"abcat0300000": 0.25,
|
| 18 |
+
"abcat0400000": 0.35,
|
| 19 |
+
"abcat0500000": 0.17,
|
| 20 |
+
}
|
| 21 |
+
image_only_output = {
|
| 22 |
+
"abcat0100000": 0.10,
|
| 23 |
+
"abcat0200000": 0.20,
|
| 24 |
+
"abcat0300000": 0.30,
|
| 25 |
+
"abcat0400000": 0.25,
|
| 26 |
+
"abcat0500000": 0.15,
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
if mode == "Multimodal":
|
| 30 |
+
return multimodal_output
|
| 31 |
elif mode == "Text Only":
|
| 32 |
+
return text_only_output
|
|
|
|
|
|
|
| 33 |
elif mode == "Image Only":
|
| 34 |
+
return image_only_output
|
| 35 |
else:
|
| 36 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
+
def update_inputs(mode: str):
|
| 40 |
+
# ... your existing update_inputs function ...
|
| 41 |
if mode == "Multimodal":
|
| 42 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 43 |
elif mode == "Text Only":
|
| 44 |
return gr.Textbox(visible=True), gr.Image(visible=False)
|
| 45 |
elif mode == "Image Only":
|
| 46 |
return gr.Textbox(visible=False), gr.Image(visible=True)
|
| 47 |
+
else:
|
| 48 |
return gr.Textbox(visible=True), gr.Image(visible=True)
|
| 49 |
|
| 50 |
|
| 51 |
+
# π CUSTOM CSS FOR FIXED FOOTER
|
| 52 |
+
css_code = """
|
| 53 |
+
/* Target the footer container by its ID and apply fixed positioning */
|
| 54 |
+
#footer-container {
|
| 55 |
+
position: fixed;
|
| 56 |
+
bottom: 0;
|
| 57 |
+
left: 0;
|
| 58 |
+
right: 0;
|
| 59 |
+
z-index: 1000; /* Ensure it stays on top of other content */
|
| 60 |
+
background-color: var(--background-fill-primary); /* Use a Gradio theme variable */
|
| 61 |
+
padding: var(--spacing-md);
|
| 62 |
+
border-top: 1px solid var(--border-color-primary);
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
/* Add padding to the body to prevent content from being hidden by the footer */
|
| 66 |
+
.gradio-container {
|
| 67 |
+
padding-bottom: 70px !important;
|
| 68 |
+
}
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
# π USER INTERFACE
|
| 72 |
+
with gr.Blocks(
|
| 73 |
+
title="Multimodal Product Classification",
|
| 74 |
+
theme=gr.themes.Ocean(),
|
| 75 |
+
css=css_code,
|
| 76 |
+
) as demo:
|
| 77 |
+
# π TABS
|
| 78 |
with gr.Tabs():
|
| 79 |
+
# ... your existing tabs ...
|
| 80 |
+
# π APP TAB
|
| 81 |
with gr.TabItem("App"):
|
| 82 |
+
gr.Markdown("# ποΈ Multimodal Product Classification")
|
|
|
|
| 83 |
|
| 84 |
+
with gr.Row(equal_height=True):
|
| 85 |
with gr.Column(scale=1):
|
| 86 |
+
with gr.Column():
|
| 87 |
+
gr.Markdown("## βοΈ Classification Inputs")
|
| 88 |
|
| 89 |
mode_radio = gr.Radio(
|
| 90 |
choices=["Multimodal", "Text Only", "Image Only"],
|
| 91 |
value="Multimodal",
|
| 92 |
+
label="Choose Classification Mode:",
|
| 93 |
)
|
| 94 |
|
| 95 |
text_input = gr.Textbox(
|
| 96 |
+
label="Product Description:",
|
| 97 |
placeholder="e.g., Apple iPhone 15 Pro Max 256GB",
|
| 98 |
)
|
| 99 |
+
|
| 100 |
image_input = gr.Image(
|
| 101 |
label="Product Image", type="filepath", visible=True
|
| 102 |
)
|
| 103 |
|
| 104 |
+
classify_button = gr.Button(
|
| 105 |
+
"β¨ Classify Product", variant="primary"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
+
with gr.Column(scale=2):
|
| 109 |
+
with gr.Column():
|
| 110 |
+
gr.Markdown("## π Results")
|
| 111 |
+
|
| 112 |
gr.Markdown(
|
| 113 |
+
"""**π‘ How to use this app**
|
| 114 |
+
|
| 115 |
+
This app classifies a product based on its description and image.
|
| 116 |
- **Multimodal:** Uses both text and image for the most accurate prediction.
|
| 117 |
- **Text Only:** Uses only the product description.
|
| 118 |
- **Image Only:** Uses only the product image.
|
| 119 |
"""
|
| 120 |
)
|
| 121 |
|
| 122 |
+
output_label = gr.Label(
|
| 123 |
+
label="Predict category", num_top_classes=5
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# π ABOUT TAB
|
| 127 |
with gr.TabItem("About"):
|
| 128 |
+
gr.Markdown("""...""")
|
| 129 |
+
|
| 130 |
+
# π MODEL TAB
|
| 131 |
+
with gr.TabItem("Model"):
|
| 132 |
+
gr.Markdown("""...""")
|
| 133 |
+
|
| 134 |
+
# π FOOTER
|
| 135 |
+
with gr.Row(elem_id="footer-container"):
|
| 136 |
+
gr.HTML("""
|
| 137 |
+
<div style="text-align: center;">
|
| 138 |
+
<b>Connect with me:</b> πΌ <a href="https://www.linkedin.com/in/alex-turpo/" target="_blank">LinkedIn</a> β’
|
| 139 |
+
π± <a href="https://github.com/iBrokeTheCode" target="_blank">GitHub</a> β’
|
| 140 |
+
π€ <a href="https://huggingface.co/iBrokeTheCode" target="_blank">Hugging Face</a>
|
| 141 |
+
</div>
|
| 142 |
+
""")
|
| 143 |
+
|
| 144 |
+
# π EVENT LISTENERS
|
| 145 |
mode_radio.change(
|
| 146 |
+
fn=update_inputs,
|
| 147 |
+
inputs=mode_radio,
|
| 148 |
+
outputs=[text_input, image_input],
|
| 149 |
)
|
| 150 |
|
| 151 |
+
classify_button.click(
|
|
|
|
| 152 |
fn=predict, inputs=[mode_radio, text_input, image_input], outputs=output_label
|
| 153 |
)
|
| 154 |
|