Commit
Β·
df5c96c
1
Parent(s):
0225bda
chore: Get embeddings and predictions
Browse files- predictor.py +158 -42
predictor.py
CHANGED
|
@@ -1,60 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from tensorflow.keras.models import load_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
#
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
try:
|
| 7 |
text_model = load_model("./models/text_model")
|
| 8 |
image_model = load_model("./models/image_model")
|
| 9 |
multimodal_model = load_model("./models/multimodal_model")
|
| 10 |
-
print("β
|
| 11 |
except Exception as e:
|
| 12 |
-
print(f"β Error loading models: {e}")
|
| 13 |
-
text_model = None
|
| 14 |
-
image_model = None
|
| 15 |
-
multimodal_model = None
|
| 16 |
|
| 17 |
-
# A placeholder for your class labels
|
| 18 |
-
CLASS_LABELS = [
|
| 19 |
-
"abcat0100000",
|
| 20 |
-
"abcat0200000",
|
| 21 |
-
"abcat0207000",
|
| 22 |
-
] # Add your actual labels
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
def
|
| 27 |
"""
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"""
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
"abcat0200000": 0.15,
|
| 41 |
-
"abcat0300000": 0.25,
|
| 42 |
-
"abcat0400000": 0.35,
|
| 43 |
-
"abcat0500000": 0.17,
|
| 44 |
-
}
|
| 45 |
-
image_only_output = {
|
| 46 |
-
"abcat0100000": 0.10,
|
| 47 |
-
"abcat0200000": 0.20,
|
| 48 |
-
"abcat0300000": 0.30,
|
| 49 |
-
"abcat0400000": 0.25,
|
| 50 |
-
"abcat0500000": 0.15,
|
| 51 |
-
}
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if mode == "Multimodal":
|
| 54 |
-
|
| 55 |
elif mode == "Text Only":
|
| 56 |
-
|
| 57 |
elif mode == "Image Only":
|
| 58 |
-
|
| 59 |
else:
|
|
|
|
| 60 |
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any, Dict, Optional
|
| 3 |
+
|
| 4 |
+
from numpy import array, expand_dims, float32, ndarray, transpose, zeros
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from tensorflow import constant
|
| 8 |
from tensorflow.keras.models import load_model
|
| 9 |
+
from transformers import TFConvNextV2Model
|
| 10 |
+
|
| 11 |
+
# TODO: Hardcoded class labels for the output, as discussed
|
| 12 |
+
CLASS_LABELS = [
|
| 13 |
+
"abcat0100000",
|
| 14 |
+
"abcat0200000",
|
| 15 |
+
"abcat0300000",
|
| 16 |
+
"abcat0400000",
|
| 17 |
+
"abcat0500000",
|
| 18 |
+
]
|
| 19 |
|
| 20 |
+
# π LOAD MODELS
|
| 21 |
+
print("π¬ Loading embedding models...")
|
| 22 |
+
try:
|
| 23 |
+
text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 24 |
+
image_feature_extractor = TFConvNextV2Model.from_pretrained(
|
| 25 |
+
"facebook/convnextv2-tiny-22k-224"
|
| 26 |
+
)
|
| 27 |
+
print("β
Embedding models loaded successfully!")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"β Error loading embedding models: {e}")
|
| 30 |
+
text_embedding_model, image_feature_extractor = None, None
|
| 31 |
+
|
| 32 |
+
# Load the final classification models (MLP heads)
|
| 33 |
+
print("π¬ Loading classification models...")
|
| 34 |
try:
|
| 35 |
text_model = load_model("./models/text_model")
|
| 36 |
image_model = load_model("./models/image_model")
|
| 37 |
multimodal_model = load_model("./models/multimodal_model")
|
| 38 |
+
print("β
Classification models loaded successfully!")
|
| 39 |
except Exception as e:
|
| 40 |
+
print(f"β Error loading classification models: {e}")
|
| 41 |
+
text_model, image_model, multimodal_model = None, None, None
|
|
|
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# π EMBEDDING FUNCTIONS
|
| 45 |
+
def get_text_embeddings(text: Optional[str]) -> ndarray:
|
| 46 |
+
"""
|
| 47 |
+
Generates a dense embedding vector from a text string.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
text (Optional[str]): The input text. Can be None or an empty string.
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
np.ndarray: A NumPy array of shape (1, 384) representing the text
|
| 54 |
+
embedding. Returns a zero vector if the input is empty.
|
| 55 |
+
"""
|
| 56 |
+
# Handle cases where no text is provided
|
| 57 |
+
if not text or not text.strip():
|
| 58 |
+
# Returns a zero vector with the correct dimension (384)
|
| 59 |
+
return zeros(
|
| 60 |
+
(1, text_embedding_model.get_sentence_embedding_dimension()), dtype=float32
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Use the pre-trained SentenceTransformer to encode the text
|
| 64 |
+
embeddings = text_embedding_model.encode([text])
|
| 65 |
+
return array(embeddings, dtype=float32)
|
| 66 |
|
| 67 |
+
|
| 68 |
+
def get_image_embeddings(image_path: Optional[str]) -> ndarray:
|
| 69 |
"""
|
| 70 |
+
Preprocesses an image and generates an embedding vector using a pre-trained model.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
image_path (Optional[str]): The file path to the image.
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
np.ndarray: A NumPy array of shape (1, 768) representing the image
|
| 77 |
+
embedding. Returns a zero vector if no image is provided.
|
| 78 |
"""
|
| 79 |
+
# Handle cases where no image is provided
|
| 80 |
+
if image_path is None:
|
| 81 |
+
return zeros((1, 768), dtype=float32)
|
| 82 |
+
|
| 83 |
+
# Load the image and convert to RGB format
|
| 84 |
+
image = Image.open(image_path).convert("RGB")
|
| 85 |
+
|
| 86 |
+
# Resize the image to the model's expected input size (224x224)
|
| 87 |
+
image = image.resize((224, 224), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# Convert to NumPy array and add a batch dimension (1, H, W, C)
|
| 90 |
+
image_array = array(image, dtype=float32)
|
| 91 |
+
image_array = expand_dims(image_array, axis=0)
|
| 92 |
+
|
| 93 |
+
# Transpose the array to match the model's channel order (1, C, H, W)
|
| 94 |
+
image_array = transpose(image_array, (0, 3, 1, 2))
|
| 95 |
+
|
| 96 |
+
# Normalize the pixel values (not strictly necessary for this model, but good practice)
|
| 97 |
+
image_array = image_array / 255.0
|
| 98 |
+
|
| 99 |
+
# Pass the preprocessed image through the feature extractor model
|
| 100 |
+
embeddings_output = image_feature_extractor(constant(image_array))
|
| 101 |
+
|
| 102 |
+
# Extract the final embedding from the pooler_output
|
| 103 |
+
embeddings = embeddings_output.pooler_output
|
| 104 |
+
|
| 105 |
+
return embeddings.numpy()
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# π MAIN PREDICTION FUNCTION
|
| 109 |
+
def predict(
|
| 110 |
+
mode: str, text: Optional[str], image_path: Optional[str]
|
| 111 |
+
) -> Dict[str, Any]:
|
| 112 |
+
"""
|
| 113 |
+
Predicts the category of a product based on the selected mode.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
mode (str): The prediction mode ("Multimodal", "Text Only", "Image Only").
|
| 117 |
+
text (Optional[str]): The product description text.
|
| 118 |
+
image_path (Optional[str]): The file path to the product image.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
Dict[str, Any]: A dictionary of class labels and their corresponding
|
| 122 |
+
prediction probabilities. Returns an empty dictionary
|
| 123 |
+
if the mode is invalid.
|
| 124 |
+
"""
|
| 125 |
+
# Generate embeddings for both inputs
|
| 126 |
+
text_emb = get_text_embeddings(text)
|
| 127 |
+
image_emb = get_image_embeddings(image_path)
|
| 128 |
+
|
| 129 |
+
# Get predictions based on the selected mode
|
| 130 |
if mode == "Multimodal":
|
| 131 |
+
predictions = multimodal_model.predict([text_emb, image_emb])
|
| 132 |
elif mode == "Text Only":
|
| 133 |
+
predictions = text_model.predict(text_emb)
|
| 134 |
elif mode == "Image Only":
|
| 135 |
+
predictions = image_model.predict(image_emb)
|
| 136 |
else:
|
| 137 |
+
# Return an empty dictionary if the mode is not recognized
|
| 138 |
return {}
|
| 139 |
+
|
| 140 |
+
# Format the output into a dictionary with labels and probabilities
|
| 141 |
+
# The model's output is a 2D array, so we take the first row (index 0)
|
| 142 |
+
prediction_dict = dict(zip(CLASS_LABELS, predictions[0]))
|
| 143 |
+
|
| 144 |
+
return prediction_dict
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# π SANITY CHECKS
|
| 148 |
+
if __name__ == "__main__":
|
| 149 |
+
print("\n--- Running sanity checks for predictor.py ---")
|
| 150 |
+
|
| 151 |
+
# Check text embedding function
|
| 152 |
+
print("\n--- Testing get_text_embeddings ---")
|
| 153 |
+
sample_text = (
|
| 154 |
+
"A sleek silver laptop with a large screen and high-resolution display."
|
| 155 |
+
)
|
| 156 |
+
text_emb = get_text_embeddings(sample_text)
|
| 157 |
+
print(f"Embedding shape for a normal string: {text_emb.shape}")
|
| 158 |
+
empty_text_emb = get_text_embeddings("")
|
| 159 |
+
print(f"Embedding shape for an empty string: {empty_text_emb.shape}")
|
| 160 |
+
spaces_text_emb = get_text_embeddings(" ")
|
| 161 |
+
print(f"Embedding shape for a string with spaces: {spaces_text_emb.shape}")
|
| 162 |
+
|
| 163 |
+
# Check image embedding function
|
| 164 |
+
print("\n--- Testing get_image_embeddings ---")
|
| 165 |
+
test_image_path = "test.jpeg" # Ensure this file exists for the test to pass
|
| 166 |
+
if os.path.exists(test_image_path):
|
| 167 |
+
image_emb = get_image_embeddings(test_image_path)
|
| 168 |
+
print(f"β
Embedding shape for an image file: {image_emb.shape}")
|
| 169 |
+
else:
|
| 170 |
+
print(
|
| 171 |
+
f"β οΈ Warning: Test image file not found at {test_image_path}. Skipping image embedding test."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
empty_image_emb = get_image_embeddings(None)
|
| 175 |
+
print(f"Embedding shape for a None input: {empty_image_emb.shape}")
|
| 176 |
+
print("--- Sanity checks complete. ---")
|