Spaces:
Running
Running
ssed
Browse files- app.py +1 -0
- models/fm4m.py +13 -4
- models/smi_ssed/__pycache__/load.cpython-310.pyc +0 -0
- models/smi_ssed/bert_vocab_curated.txt +2393 -0
- models/smi_ssed/load.py +550 -0
- models/smi_ted/smi_ted_light/load.py +4 -2
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -65,6 +65,7 @@ models_enabled = [
|
|
| 65 |
"MHG-GED",
|
| 66 |
"MolFormer",
|
| 67 |
"SMI-TED",
|
|
|
|
| 68 |
"Mordred",
|
| 69 |
"MorganFingerprint",
|
| 70 |
]
|
|
|
|
| 65 |
"MHG-GED",
|
| 66 |
"MolFormer",
|
| 67 |
"SMI-TED",
|
| 68 |
+
"SMI-SSED",
|
| 69 |
"Mordred",
|
| 70 |
"MorganFingerprint",
|
| 71 |
]
|
models/fm4m.py
CHANGED
|
@@ -31,6 +31,7 @@ sys.path.append("models/")
|
|
| 31 |
from models.selfies_ted.load import SELFIES as bart
|
| 32 |
from models.mhg_model import load as mhg
|
| 33 |
from models.smi_ted.smi_ted_light.load import load_smi_ted
|
|
|
|
| 34 |
|
| 35 |
import mordred
|
| 36 |
from mordred import Calculator, descriptors
|
|
@@ -58,13 +59,15 @@ def avail_models_data():
|
|
| 58 |
models = [{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"},
|
| 59 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
|
| 60 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
|
| 61 |
-
{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
def avail_models(raw=False):
|
| 65 |
global models
|
| 66 |
|
| 67 |
models = [{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model"},
|
|
|
|
| 68 |
{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
|
| 69 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality"},
|
| 70 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
|
|
@@ -201,7 +204,7 @@ avail_models_data()
|
|
| 201 |
|
| 202 |
|
| 203 |
def get_representation(train_data,test_data,model_type, return_tensor=True):
|
| 204 |
-
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted"}
|
| 205 |
if model_type in alias.keys():
|
| 206 |
model_type = alias[model_type]
|
| 207 |
|
|
@@ -230,6 +233,12 @@ def get_representation(train_data,test_data,model_type, return_tensor=True):
|
|
| 230 |
x_batch = model.encode(train_data, return_torch=return_tensor)
|
| 231 |
x_batch_test = model.encode(test_data, return_torch=return_tensor)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
elif model_type == "mol-xl":
|
| 234 |
model = AutoModel.from_pretrained("ibm/MoLFormer-XL-both-10pct", deterministic_eval=True,
|
| 235 |
trust_remote_code=True)
|
|
@@ -305,7 +314,7 @@ def get_representation(train_data,test_data,model_type, return_tensor=True):
|
|
| 305 |
|
| 306 |
def single_modal(model,dataset=None, downstream_model=None, params=None, x_train=None, x_test=None, y_train=None, y_test=None):
|
| 307 |
print(model)
|
| 308 |
-
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted"}
|
| 309 |
data = avail_models(raw=True)
|
| 310 |
df = pd.DataFrame(data)
|
| 311 |
#print(list(df["Name"].values))
|
|
@@ -619,7 +628,7 @@ def multi_modal(model_list,dataset=None, downstream_model=None,params=None, x_tr
|
|
| 619 |
df = pd.DataFrame(data)
|
| 620 |
list(df["Name"].values)
|
| 621 |
|
| 622 |
-
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl","SMI-TED":"smi-ted", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"}
|
| 623 |
#if set(model_list).issubset(list(df["Name"].values)):
|
| 624 |
if set(model_list).issubset(list(alias.keys())):
|
| 625 |
for i, model in enumerate(model_list):
|
|
|
|
| 31 |
from models.selfies_ted.load import SELFIES as bart
|
| 32 |
from models.mhg_model import load as mhg
|
| 33 |
from models.smi_ted.smi_ted_light.load import load_smi_ted
|
| 34 |
+
from models.smi_ssed.load import load_smi_ssed
|
| 35 |
|
| 36 |
import mordred
|
| 37 |
from mordred import Calculator, descriptors
|
|
|
|
| 59 |
models = [{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"},
|
| 60 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
|
| 61 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
|
| 62 |
+
{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"},
|
| 63 |
+
{"Name": "smi-ssed", "Model Name": "SMI-SSED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}]
|
| 64 |
|
| 65 |
|
| 66 |
def avail_models(raw=False):
|
| 67 |
global models
|
| 68 |
|
| 69 |
models = [{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model"},
|
| 70 |
+
{"Name": "smi-ssed", "Model Name": "SMI-SSED","Description": "SMILES based encoder decoder model"},
|
| 71 |
{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
|
| 72 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality"},
|
| 73 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
|
|
|
|
| 204 |
|
| 205 |
|
| 206 |
def get_representation(train_data,test_data,model_type, return_tensor=True):
|
| 207 |
+
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
| 208 |
if model_type in alias.keys():
|
| 209 |
model_type = alias[model_type]
|
| 210 |
|
|
|
|
| 233 |
x_batch = model.encode(train_data, return_torch=return_tensor)
|
| 234 |
x_batch_test = model.encode(test_data, return_torch=return_tensor)
|
| 235 |
|
| 236 |
+
elif model_type == "smi-ssed":
|
| 237 |
+
model = load_smi_ssed(folder='', ckpt_filename='')
|
| 238 |
+
with torch.no_grad():
|
| 239 |
+
x_batch = model.encode(train_data, return_torch=return_tensor)
|
| 240 |
+
x_batch_test = model.encode(test_data, return_torch=return_tensor)
|
| 241 |
+
|
| 242 |
elif model_type == "mol-xl":
|
| 243 |
model = AutoModel.from_pretrained("ibm/MoLFormer-XL-both-10pct", deterministic_eval=True,
|
| 244 |
trust_remote_code=True)
|
|
|
|
| 314 |
|
| 315 |
def single_modal(model,dataset=None, downstream_model=None, params=None, x_train=None, x_test=None, y_train=None, y_test=None):
|
| 316 |
print(model)
|
| 317 |
+
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
| 318 |
data = avail_models(raw=True)
|
| 319 |
df = pd.DataFrame(data)
|
| 320 |
#print(list(df["Name"].values))
|
|
|
|
| 628 |
df = pd.DataFrame(data)
|
| 629 |
list(df["Name"].values)
|
| 630 |
|
| 631 |
+
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl","SMI-TED":"smi-ted","SMI-SSED":"smi-ssed", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"}
|
| 632 |
#if set(model_list).issubset(list(df["Name"].values)):
|
| 633 |
if set(model_list).issubset(list(alias.keys())):
|
| 634 |
for i, model in enumerate(model_list):
|
models/smi_ssed/__pycache__/load.cpython-310.pyc
ADDED
|
Binary file (15.8 kB). View file
|
|
|
models/smi_ssed/bert_vocab_curated.txt
ADDED
|
@@ -0,0 +1,2393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<bos>
|
| 2 |
+
<eos>
|
| 3 |
+
<pad>
|
| 4 |
+
<mask>
|
| 5 |
+
C
|
| 6 |
+
c
|
| 7 |
+
(
|
| 8 |
+
)
|
| 9 |
+
1
|
| 10 |
+
O
|
| 11 |
+
N
|
| 12 |
+
2
|
| 13 |
+
=
|
| 14 |
+
n
|
| 15 |
+
3
|
| 16 |
+
[C@H]
|
| 17 |
+
[C@@H]
|
| 18 |
+
F
|
| 19 |
+
S
|
| 20 |
+
4
|
| 21 |
+
Cl
|
| 22 |
+
-
|
| 23 |
+
o
|
| 24 |
+
s
|
| 25 |
+
[nH]
|
| 26 |
+
#
|
| 27 |
+
/
|
| 28 |
+
Br
|
| 29 |
+
[C@]
|
| 30 |
+
[C@@]
|
| 31 |
+
[N+]
|
| 32 |
+
[O-]
|
| 33 |
+
5
|
| 34 |
+
\
|
| 35 |
+
.
|
| 36 |
+
I
|
| 37 |
+
6
|
| 38 |
+
[S@]
|
| 39 |
+
[S@@]
|
| 40 |
+
P
|
| 41 |
+
[N-]
|
| 42 |
+
[Si]
|
| 43 |
+
7
|
| 44 |
+
[n+]
|
| 45 |
+
[2H]
|
| 46 |
+
8
|
| 47 |
+
[NH+]
|
| 48 |
+
B
|
| 49 |
+
9
|
| 50 |
+
[C-]
|
| 51 |
+
[Na+]
|
| 52 |
+
[Cl-]
|
| 53 |
+
[c-]
|
| 54 |
+
[CH]
|
| 55 |
+
%10
|
| 56 |
+
[NH2+]
|
| 57 |
+
[P+]
|
| 58 |
+
[B]
|
| 59 |
+
[I-]
|
| 60 |
+
%11
|
| 61 |
+
[CH2-]
|
| 62 |
+
[O+]
|
| 63 |
+
[NH3+]
|
| 64 |
+
[C]
|
| 65 |
+
[Br-]
|
| 66 |
+
[IH2]
|
| 67 |
+
[S-]
|
| 68 |
+
[cH-]
|
| 69 |
+
%12
|
| 70 |
+
[nH+]
|
| 71 |
+
[B-]
|
| 72 |
+
[K+]
|
| 73 |
+
[Sn]
|
| 74 |
+
[Se]
|
| 75 |
+
[CH-]
|
| 76 |
+
[HH]
|
| 77 |
+
[Y]
|
| 78 |
+
[n-]
|
| 79 |
+
[CH3-]
|
| 80 |
+
[SiH]
|
| 81 |
+
[S+]
|
| 82 |
+
%13
|
| 83 |
+
[SiH2]
|
| 84 |
+
[Li+]
|
| 85 |
+
[NH-]
|
| 86 |
+
%14
|
| 87 |
+
[Na]
|
| 88 |
+
[CH2]
|
| 89 |
+
[O-2]
|
| 90 |
+
[U+2]
|
| 91 |
+
[W]
|
| 92 |
+
[Al]
|
| 93 |
+
[P@]
|
| 94 |
+
[Fe+2]
|
| 95 |
+
[PH+]
|
| 96 |
+
%15
|
| 97 |
+
[Cl+3]
|
| 98 |
+
[Zn+2]
|
| 99 |
+
[Ir]
|
| 100 |
+
[Mg+2]
|
| 101 |
+
[Pt+2]
|
| 102 |
+
[OH2+]
|
| 103 |
+
[As]
|
| 104 |
+
[Fe]
|
| 105 |
+
[OH+]
|
| 106 |
+
[Zr+2]
|
| 107 |
+
[3H]
|
| 108 |
+
[Ge]
|
| 109 |
+
[SiH3]
|
| 110 |
+
[OH-]
|
| 111 |
+
[NH4+]
|
| 112 |
+
[Cu+2]
|
| 113 |
+
[P@@]
|
| 114 |
+
p
|
| 115 |
+
[Pt]
|
| 116 |
+
%16
|
| 117 |
+
[Ca+2]
|
| 118 |
+
[Zr]
|
| 119 |
+
[F-]
|
| 120 |
+
[C+]
|
| 121 |
+
[Ti]
|
| 122 |
+
[P-]
|
| 123 |
+
[V]
|
| 124 |
+
[se]
|
| 125 |
+
[U]
|
| 126 |
+
[O]
|
| 127 |
+
[Ni+2]
|
| 128 |
+
[Zn]
|
| 129 |
+
[Co]
|
| 130 |
+
[Ni]
|
| 131 |
+
[Pd+2]
|
| 132 |
+
[Cu]
|
| 133 |
+
%17
|
| 134 |
+
[Cu+]
|
| 135 |
+
[Te]
|
| 136 |
+
[H+]
|
| 137 |
+
[CH+]
|
| 138 |
+
[Li]
|
| 139 |
+
[Pd]
|
| 140 |
+
[Mo]
|
| 141 |
+
[Ru+2]
|
| 142 |
+
[o+]
|
| 143 |
+
[Re]
|
| 144 |
+
[SH+]
|
| 145 |
+
%18
|
| 146 |
+
[Ac]
|
| 147 |
+
[Cr]
|
| 148 |
+
[NH2-]
|
| 149 |
+
[K]
|
| 150 |
+
[13CH2]
|
| 151 |
+
[c]
|
| 152 |
+
[Zr+4]
|
| 153 |
+
[Tl]
|
| 154 |
+
[13C]
|
| 155 |
+
[Mn]
|
| 156 |
+
[N@+]
|
| 157 |
+
[Hg]
|
| 158 |
+
[Rh]
|
| 159 |
+
[Ti+4]
|
| 160 |
+
[Sb]
|
| 161 |
+
[Co+2]
|
| 162 |
+
[Ag+]
|
| 163 |
+
[Ru]
|
| 164 |
+
%19
|
| 165 |
+
[N@@+]
|
| 166 |
+
[Ti+2]
|
| 167 |
+
[Al+3]
|
| 168 |
+
[Pb]
|
| 169 |
+
[I+]
|
| 170 |
+
[18F]
|
| 171 |
+
[s+]
|
| 172 |
+
[Rb+]
|
| 173 |
+
[Ba+2]
|
| 174 |
+
[H-]
|
| 175 |
+
[Fe+3]
|
| 176 |
+
[Ir+3]
|
| 177 |
+
[13cH]
|
| 178 |
+
%20
|
| 179 |
+
[AlH2]
|
| 180 |
+
[Au+]
|
| 181 |
+
[13c]
|
| 182 |
+
[SH2+]
|
| 183 |
+
[Sn+2]
|
| 184 |
+
[Mn+2]
|
| 185 |
+
[Si-]
|
| 186 |
+
[Ag]
|
| 187 |
+
[N]
|
| 188 |
+
[Bi]
|
| 189 |
+
%21
|
| 190 |
+
[In]
|
| 191 |
+
[CH2+]
|
| 192 |
+
[Y+3]
|
| 193 |
+
[Ga]
|
| 194 |
+
%22
|
| 195 |
+
[Co+3]
|
| 196 |
+
[Au]
|
| 197 |
+
[13CH3]
|
| 198 |
+
[Mg]
|
| 199 |
+
[Cs+]
|
| 200 |
+
[W+2]
|
| 201 |
+
[Hf]
|
| 202 |
+
[Zn+]
|
| 203 |
+
[Se-]
|
| 204 |
+
[S-2]
|
| 205 |
+
[Ca]
|
| 206 |
+
[pH]
|
| 207 |
+
[ClH+]
|
| 208 |
+
[Ti+3]
|
| 209 |
+
%23
|
| 210 |
+
[Ru+]
|
| 211 |
+
[SH-]
|
| 212 |
+
[13CH]
|
| 213 |
+
[IH+]
|
| 214 |
+
[Hf+4]
|
| 215 |
+
[Rf]
|
| 216 |
+
[OH3+]
|
| 217 |
+
%24
|
| 218 |
+
[Pt+4]
|
| 219 |
+
[Zr+3]
|
| 220 |
+
[PH3+]
|
| 221 |
+
[Sr+2]
|
| 222 |
+
[Cd+2]
|
| 223 |
+
[Cd]
|
| 224 |
+
%25
|
| 225 |
+
[Os]
|
| 226 |
+
[BH-]
|
| 227 |
+
[Sn+4]
|
| 228 |
+
[Cr+3]
|
| 229 |
+
[Ru+3]
|
| 230 |
+
[PH2+]
|
| 231 |
+
[Rh+2]
|
| 232 |
+
[V+2]
|
| 233 |
+
%26
|
| 234 |
+
[Gd+3]
|
| 235 |
+
[Pb+2]
|
| 236 |
+
[PH]
|
| 237 |
+
[Hg+]
|
| 238 |
+
[Mo+2]
|
| 239 |
+
[AlH]
|
| 240 |
+
[Sn+]
|
| 241 |
+
%27
|
| 242 |
+
[Pd+]
|
| 243 |
+
b
|
| 244 |
+
[Rh+3]
|
| 245 |
+
[Hg+2]
|
| 246 |
+
[15NH]
|
| 247 |
+
[14C]
|
| 248 |
+
%28
|
| 249 |
+
[Mn+3]
|
| 250 |
+
[Si+]
|
| 251 |
+
[SeH]
|
| 252 |
+
[13C@H]
|
| 253 |
+
[NH]
|
| 254 |
+
[Ga+3]
|
| 255 |
+
[SiH-]
|
| 256 |
+
[13C@@H]
|
| 257 |
+
[Ce]
|
| 258 |
+
[Au+3]
|
| 259 |
+
[Bi+3]
|
| 260 |
+
[15N]
|
| 261 |
+
%29
|
| 262 |
+
[BH3-]
|
| 263 |
+
[14cH]
|
| 264 |
+
[Ti+]
|
| 265 |
+
[Gd]
|
| 266 |
+
[cH+]
|
| 267 |
+
[Cr+2]
|
| 268 |
+
[Sb-]
|
| 269 |
+
%30
|
| 270 |
+
[Be+2]
|
| 271 |
+
[Al+]
|
| 272 |
+
[te]
|
| 273 |
+
[11CH3]
|
| 274 |
+
[Sm]
|
| 275 |
+
[Pr]
|
| 276 |
+
[La]
|
| 277 |
+
%31
|
| 278 |
+
[Al-]
|
| 279 |
+
[Ta]
|
| 280 |
+
[125I]
|
| 281 |
+
[BH2-]
|
| 282 |
+
[Nb]
|
| 283 |
+
[Si@]
|
| 284 |
+
%32
|
| 285 |
+
[14c]
|
| 286 |
+
[Sb+3]
|
| 287 |
+
[Ba]
|
| 288 |
+
%33
|
| 289 |
+
[Os+2]
|
| 290 |
+
[Si@@]
|
| 291 |
+
[La+3]
|
| 292 |
+
[15n]
|
| 293 |
+
[15NH2]
|
| 294 |
+
[Nd+3]
|
| 295 |
+
%34
|
| 296 |
+
[14CH2]
|
| 297 |
+
[18O]
|
| 298 |
+
[Nd]
|
| 299 |
+
[GeH]
|
| 300 |
+
[Ni+3]
|
| 301 |
+
[Eu]
|
| 302 |
+
[Dy+3]
|
| 303 |
+
[Sc]
|
| 304 |
+
%36
|
| 305 |
+
[Se-2]
|
| 306 |
+
[As+]
|
| 307 |
+
%35
|
| 308 |
+
[AsH]
|
| 309 |
+
[Tb]
|
| 310 |
+
[Sb+5]
|
| 311 |
+
[Se+]
|
| 312 |
+
[Ce+3]
|
| 313 |
+
[c+]
|
| 314 |
+
[In+3]
|
| 315 |
+
[SnH]
|
| 316 |
+
[Mo+4]
|
| 317 |
+
%37
|
| 318 |
+
[V+4]
|
| 319 |
+
[Eu+3]
|
| 320 |
+
[Hf+2]
|
| 321 |
+
%38
|
| 322 |
+
[Pt+]
|
| 323 |
+
[p+]
|
| 324 |
+
[123I]
|
| 325 |
+
[Tl+]
|
| 326 |
+
[Sm+3]
|
| 327 |
+
%39
|
| 328 |
+
[Yb+3]
|
| 329 |
+
%40
|
| 330 |
+
[Yb]
|
| 331 |
+
[Os+]
|
| 332 |
+
%41
|
| 333 |
+
[10B]
|
| 334 |
+
[Sc+3]
|
| 335 |
+
[Al+2]
|
| 336 |
+
%42
|
| 337 |
+
[Sr]
|
| 338 |
+
[Tb+3]
|
| 339 |
+
[Po]
|
| 340 |
+
[Tc]
|
| 341 |
+
[PH-]
|
| 342 |
+
[AlH3]
|
| 343 |
+
[Ar]
|
| 344 |
+
[U+4]
|
| 345 |
+
[SnH2]
|
| 346 |
+
[Cl+2]
|
| 347 |
+
[si]
|
| 348 |
+
[Fe+]
|
| 349 |
+
[14CH3]
|
| 350 |
+
[U+3]
|
| 351 |
+
[Cl+]
|
| 352 |
+
%43
|
| 353 |
+
[GeH2]
|
| 354 |
+
%44
|
| 355 |
+
[Er+3]
|
| 356 |
+
[Mo+3]
|
| 357 |
+
[I+2]
|
| 358 |
+
[Fe+4]
|
| 359 |
+
[99Tc]
|
| 360 |
+
%45
|
| 361 |
+
[11C]
|
| 362 |
+
%46
|
| 363 |
+
[SnH3]
|
| 364 |
+
[S]
|
| 365 |
+
[Te+]
|
| 366 |
+
[Er]
|
| 367 |
+
[Lu+3]
|
| 368 |
+
[11B]
|
| 369 |
+
%47
|
| 370 |
+
%48
|
| 371 |
+
[P]
|
| 372 |
+
[Tm]
|
| 373 |
+
[Th]
|
| 374 |
+
[Dy]
|
| 375 |
+
[Pr+3]
|
| 376 |
+
[Ta+5]
|
| 377 |
+
[Nb+5]
|
| 378 |
+
[Rb]
|
| 379 |
+
[GeH3]
|
| 380 |
+
[Br+2]
|
| 381 |
+
%49
|
| 382 |
+
[131I]
|
| 383 |
+
[Fm]
|
| 384 |
+
[Cs]
|
| 385 |
+
[BH4-]
|
| 386 |
+
[Lu]
|
| 387 |
+
[15nH]
|
| 388 |
+
%50
|
| 389 |
+
[Ru+6]
|
| 390 |
+
[b-]
|
| 391 |
+
[Ho]
|
| 392 |
+
[Th+4]
|
| 393 |
+
[Ru+4]
|
| 394 |
+
%52
|
| 395 |
+
[14CH]
|
| 396 |
+
%51
|
| 397 |
+
[Cr+6]
|
| 398 |
+
[18OH]
|
| 399 |
+
[Ho+3]
|
| 400 |
+
[Ce+4]
|
| 401 |
+
[Bi+2]
|
| 402 |
+
[Co+]
|
| 403 |
+
%53
|
| 404 |
+
[Yb+2]
|
| 405 |
+
[Fe+6]
|
| 406 |
+
[Be]
|
| 407 |
+
%54
|
| 408 |
+
[SH3+]
|
| 409 |
+
[Np]
|
| 410 |
+
[As-]
|
| 411 |
+
%55
|
| 412 |
+
[14C@@H]
|
| 413 |
+
[Ir+2]
|
| 414 |
+
[GaH3]
|
| 415 |
+
[p-]
|
| 416 |
+
[GeH4]
|
| 417 |
+
[Sn+3]
|
| 418 |
+
[Os+4]
|
| 419 |
+
%56
|
| 420 |
+
[14C@H]
|
| 421 |
+
[sH+]
|
| 422 |
+
[19F]
|
| 423 |
+
[Eu+2]
|
| 424 |
+
[TlH]
|
| 425 |
+
%57
|
| 426 |
+
[Cr+4]
|
| 427 |
+
%58
|
| 428 |
+
[B@@-]
|
| 429 |
+
[SiH+]
|
| 430 |
+
[At]
|
| 431 |
+
[Am]
|
| 432 |
+
[Fe+5]
|
| 433 |
+
[AsH2]
|
| 434 |
+
[Si+4]
|
| 435 |
+
[B@-]
|
| 436 |
+
[Pu]
|
| 437 |
+
[SbH]
|
| 438 |
+
[P-2]
|
| 439 |
+
[Tm+3]
|
| 440 |
+
*
|
| 441 |
+
%59
|
| 442 |
+
[se+]
|
| 443 |
+
[IH-]
|
| 444 |
+
%60
|
| 445 |
+
[oH+]
|
| 446 |
+
[1H]
|
| 447 |
+
[15N+]
|
| 448 |
+
[124I]
|
| 449 |
+
[S@@+]
|
| 450 |
+
[P-3]
|
| 451 |
+
[H]
|
| 452 |
+
[IH2+]
|
| 453 |
+
[TeH]
|
| 454 |
+
[Xe]
|
| 455 |
+
[PH4+]
|
| 456 |
+
[Cr+]
|
| 457 |
+
[Cm]
|
| 458 |
+
[I+3]
|
| 459 |
+
%61
|
| 460 |
+
[Nb+2]
|
| 461 |
+
[Ru+5]
|
| 462 |
+
%62
|
| 463 |
+
[Ta+2]
|
| 464 |
+
[Tc+4]
|
| 465 |
+
[CH3+]
|
| 466 |
+
[Pm]
|
| 467 |
+
[Si@H]
|
| 468 |
+
[No]
|
| 469 |
+
%63
|
| 470 |
+
[Cr+5]
|
| 471 |
+
[Th+2]
|
| 472 |
+
[Zn-2]
|
| 473 |
+
[13C@]
|
| 474 |
+
[Lr]
|
| 475 |
+
%64
|
| 476 |
+
[99Tc+3]
|
| 477 |
+
%65
|
| 478 |
+
[13C@@]
|
| 479 |
+
%66
|
| 480 |
+
[Fe-]
|
| 481 |
+
[17O]
|
| 482 |
+
[siH]
|
| 483 |
+
[Sb+]
|
| 484 |
+
[OH]
|
| 485 |
+
[IH]
|
| 486 |
+
[11CH2]
|
| 487 |
+
[Cf]
|
| 488 |
+
[SiH2+]
|
| 489 |
+
[Gd+2]
|
| 490 |
+
[In+]
|
| 491 |
+
[Si@@H]
|
| 492 |
+
[Mn+]
|
| 493 |
+
[99Tc+4]
|
| 494 |
+
[Ga-]
|
| 495 |
+
%67
|
| 496 |
+
[S@+]
|
| 497 |
+
[Ge+4]
|
| 498 |
+
[Tl+3]
|
| 499 |
+
[16OH]
|
| 500 |
+
%68
|
| 501 |
+
[2H-]
|
| 502 |
+
[Ra]
|
| 503 |
+
[si-]
|
| 504 |
+
[NiH2]
|
| 505 |
+
[P@@H]
|
| 506 |
+
[Rh+]
|
| 507 |
+
[12C]
|
| 508 |
+
[35S]
|
| 509 |
+
[32P]
|
| 510 |
+
[SiH2-]
|
| 511 |
+
[AlH2+]
|
| 512 |
+
[16O]
|
| 513 |
+
%69
|
| 514 |
+
[BiH]
|
| 515 |
+
[BiH2]
|
| 516 |
+
[Zn-]
|
| 517 |
+
[BH]
|
| 518 |
+
[Tc+3]
|
| 519 |
+
[Ir+]
|
| 520 |
+
[Ni+]
|
| 521 |
+
%70
|
| 522 |
+
[InH2]
|
| 523 |
+
[InH]
|
| 524 |
+
[Nb+3]
|
| 525 |
+
[PbH]
|
| 526 |
+
[Bi+]
|
| 527 |
+
%71
|
| 528 |
+
[As+3]
|
| 529 |
+
%72
|
| 530 |
+
[18O-]
|
| 531 |
+
[68Ga+3]
|
| 532 |
+
%73
|
| 533 |
+
[Pa]
|
| 534 |
+
[76Br]
|
| 535 |
+
[Tc+5]
|
| 536 |
+
[pH+]
|
| 537 |
+
[64Cu+2]
|
| 538 |
+
[Ru+8]
|
| 539 |
+
%74
|
| 540 |
+
[PH2-]
|
| 541 |
+
[Si+2]
|
| 542 |
+
[17OH]
|
| 543 |
+
[RuH]
|
| 544 |
+
[111In+3]
|
| 545 |
+
[AlH+]
|
| 546 |
+
%75
|
| 547 |
+
%76
|
| 548 |
+
[W+]
|
| 549 |
+
[SbH2]
|
| 550 |
+
[PoH]
|
| 551 |
+
[Ru-]
|
| 552 |
+
[XeH]
|
| 553 |
+
[Tc+2]
|
| 554 |
+
[13C-]
|
| 555 |
+
[Br+]
|
| 556 |
+
[Pt-2]
|
| 557 |
+
[Es]
|
| 558 |
+
[Cu-]
|
| 559 |
+
[Mg+]
|
| 560 |
+
[3HH]
|
| 561 |
+
[P@H]
|
| 562 |
+
[ClH2+]
|
| 563 |
+
%77
|
| 564 |
+
[SH]
|
| 565 |
+
[Au-]
|
| 566 |
+
[2HH]
|
| 567 |
+
%78
|
| 568 |
+
[Sn-]
|
| 569 |
+
[11CH]
|
| 570 |
+
[PdH2]
|
| 571 |
+
0
|
| 572 |
+
[Os+6]
|
| 573 |
+
%79
|
| 574 |
+
[Mo+]
|
| 575 |
+
%80
|
| 576 |
+
[al]
|
| 577 |
+
[PbH2]
|
| 578 |
+
[64Cu]
|
| 579 |
+
[Cl]
|
| 580 |
+
[12CH3]
|
| 581 |
+
%81
|
| 582 |
+
[Tc+7]
|
| 583 |
+
[11c]
|
| 584 |
+
%82
|
| 585 |
+
[Li-]
|
| 586 |
+
[99Tc+5]
|
| 587 |
+
[He]
|
| 588 |
+
[12c]
|
| 589 |
+
[Kr]
|
| 590 |
+
[RuH+2]
|
| 591 |
+
[35Cl]
|
| 592 |
+
[Pd-2]
|
| 593 |
+
[GaH2]
|
| 594 |
+
[4H]
|
| 595 |
+
[Sg]
|
| 596 |
+
[Cu-2]
|
| 597 |
+
[Br+3]
|
| 598 |
+
%83
|
| 599 |
+
[37Cl]
|
| 600 |
+
[211At]
|
| 601 |
+
[IrH+2]
|
| 602 |
+
[Mt]
|
| 603 |
+
[Ir-2]
|
| 604 |
+
[In-]
|
| 605 |
+
[12cH]
|
| 606 |
+
[12CH2]
|
| 607 |
+
[RuH2]
|
| 608 |
+
[99Tc+7]
|
| 609 |
+
%84
|
| 610 |
+
[15n+]
|
| 611 |
+
[ClH2+2]
|
| 612 |
+
[16N]
|
| 613 |
+
[111In]
|
| 614 |
+
[Tc+]
|
| 615 |
+
[Ru-2]
|
| 616 |
+
[12CH]
|
| 617 |
+
[si+]
|
| 618 |
+
[Tc+6]
|
| 619 |
+
%85
|
| 620 |
+
%86
|
| 621 |
+
[90Y]
|
| 622 |
+
[Pd-]
|
| 623 |
+
[188Re]
|
| 624 |
+
[RuH+]
|
| 625 |
+
[NiH]
|
| 626 |
+
[SiH3-]
|
| 627 |
+
[14n]
|
| 628 |
+
[CH3]
|
| 629 |
+
[14N]
|
| 630 |
+
[10BH2]
|
| 631 |
+
%88
|
| 632 |
+
%89
|
| 633 |
+
%90
|
| 634 |
+
[34S]
|
| 635 |
+
[77Br]
|
| 636 |
+
[GaH]
|
| 637 |
+
[Br]
|
| 638 |
+
[Ge@]
|
| 639 |
+
[B@@H-]
|
| 640 |
+
[CuH]
|
| 641 |
+
[SiH4]
|
| 642 |
+
[3H-]
|
| 643 |
+
%87
|
| 644 |
+
%91
|
| 645 |
+
%92
|
| 646 |
+
[67Cu]
|
| 647 |
+
[I]
|
| 648 |
+
[177Lu]
|
| 649 |
+
[ReH]
|
| 650 |
+
[67Ga+3]
|
| 651 |
+
[Db]
|
| 652 |
+
[177Lu+3]
|
| 653 |
+
[AlH2-]
|
| 654 |
+
[Si+3]
|
| 655 |
+
[Ti-2]
|
| 656 |
+
[RuH+3]
|
| 657 |
+
[al+]
|
| 658 |
+
[68Ga]
|
| 659 |
+
[2H+]
|
| 660 |
+
[B@H-]
|
| 661 |
+
[WH2]
|
| 662 |
+
[OsH]
|
| 663 |
+
[Ir-3]
|
| 664 |
+
[AlH-]
|
| 665 |
+
[Bk]
|
| 666 |
+
[75Se]
|
| 667 |
+
[14C@]
|
| 668 |
+
[Pt-]
|
| 669 |
+
[N@@H+]
|
| 670 |
+
[Nb-]
|
| 671 |
+
[13NH2]
|
| 672 |
+
%93
|
| 673 |
+
[186Re]
|
| 674 |
+
[Tb+4]
|
| 675 |
+
[PtH]
|
| 676 |
+
[IrH2]
|
| 677 |
+
[Hg-2]
|
| 678 |
+
[AlH3-]
|
| 679 |
+
[PdH+]
|
| 680 |
+
[Md]
|
| 681 |
+
[RhH+2]
|
| 682 |
+
[11cH]
|
| 683 |
+
[Co-2]
|
| 684 |
+
[15N-]
|
| 685 |
+
[ZrH2]
|
| 686 |
+
%94
|
| 687 |
+
[Hg-]
|
| 688 |
+
[127I]
|
| 689 |
+
[AsH2+]
|
| 690 |
+
[MoH2]
|
| 691 |
+
[Te+4]
|
| 692 |
+
[14C@@]
|
| 693 |
+
[As+5]
|
| 694 |
+
[SnH+3]
|
| 695 |
+
[Ge@@]
|
| 696 |
+
[6Li+]
|
| 697 |
+
[WH]
|
| 698 |
+
[Ne]
|
| 699 |
+
[14NH2]
|
| 700 |
+
[14NH]
|
| 701 |
+
[12C@@H]
|
| 702 |
+
[Os+7]
|
| 703 |
+
[RhH]
|
| 704 |
+
[Al-3]
|
| 705 |
+
[SnH+]
|
| 706 |
+
[15NH3+]
|
| 707 |
+
[Zr+]
|
| 708 |
+
[197Hg+]
|
| 709 |
+
%95
|
| 710 |
+
%96
|
| 711 |
+
[90Y+3]
|
| 712 |
+
[Os-2]
|
| 713 |
+
[98Tc+5]
|
| 714 |
+
[15NH3]
|
| 715 |
+
[bH-]
|
| 716 |
+
[33P]
|
| 717 |
+
[Zr-2]
|
| 718 |
+
[15O]
|
| 719 |
+
[Rh-]
|
| 720 |
+
[PbH3]
|
| 721 |
+
[PH2]
|
| 722 |
+
[Ni-]
|
| 723 |
+
[CuH+]
|
| 724 |
+
%97
|
| 725 |
+
%98
|
| 726 |
+
%99
|
| 727 |
+
[Os+5]
|
| 728 |
+
[PtH+]
|
| 729 |
+
[ReH4]
|
| 730 |
+
[16NH]
|
| 731 |
+
[82Br]
|
| 732 |
+
[W-]
|
| 733 |
+
[18F-]
|
| 734 |
+
[15NH4+]
|
| 735 |
+
[Se+4]
|
| 736 |
+
[SeH-]
|
| 737 |
+
[SH4]
|
| 738 |
+
[67Cu+2]
|
| 739 |
+
[12C@H]
|
| 740 |
+
[AsH3]
|
| 741 |
+
[HgH]
|
| 742 |
+
[10B-]
|
| 743 |
+
[99Tc+6]
|
| 744 |
+
[117Sn+4]
|
| 745 |
+
[Te@]
|
| 746 |
+
[P@+]
|
| 747 |
+
[35SH]
|
| 748 |
+
[SeH+]
|
| 749 |
+
[Ni-2]
|
| 750 |
+
[Al-2]
|
| 751 |
+
[TeH2]
|
| 752 |
+
[Bh]
|
| 753 |
+
[99Tc+2]
|
| 754 |
+
[Os+8]
|
| 755 |
+
[PH-2]
|
| 756 |
+
[7Li+]
|
| 757 |
+
[14nH]
|
| 758 |
+
[AlH+2]
|
| 759 |
+
[18FH]
|
| 760 |
+
[SnH4]
|
| 761 |
+
[18O-2]
|
| 762 |
+
[IrH]
|
| 763 |
+
[13N]
|
| 764 |
+
[Te@@]
|
| 765 |
+
[Rh-3]
|
| 766 |
+
[15NH+]
|
| 767 |
+
[AsH3+]
|
| 768 |
+
[SeH2]
|
| 769 |
+
[AsH+]
|
| 770 |
+
[CoH2]
|
| 771 |
+
[16NH2]
|
| 772 |
+
[AsH-]
|
| 773 |
+
[203Hg+]
|
| 774 |
+
[P@@+]
|
| 775 |
+
[166Ho+3]
|
| 776 |
+
[60Co+3]
|
| 777 |
+
[13CH2-]
|
| 778 |
+
[SeH2+]
|
| 779 |
+
[75Br]
|
| 780 |
+
[TlH2]
|
| 781 |
+
[80Br]
|
| 782 |
+
[siH+]
|
| 783 |
+
[Ca+]
|
| 784 |
+
[153Sm+3]
|
| 785 |
+
[PdH]
|
| 786 |
+
[225Ac]
|
| 787 |
+
[13CH3-]
|
| 788 |
+
[AlH4-]
|
| 789 |
+
[FeH]
|
| 790 |
+
[13CH-]
|
| 791 |
+
[14C-]
|
| 792 |
+
[11C-]
|
| 793 |
+
[153Sm]
|
| 794 |
+
[Re-]
|
| 795 |
+
[te+]
|
| 796 |
+
[13CH4]
|
| 797 |
+
[ClH+2]
|
| 798 |
+
[8CH2]
|
| 799 |
+
[99Mo]
|
| 800 |
+
[ClH3+3]
|
| 801 |
+
[SbH3]
|
| 802 |
+
[25Mg+2]
|
| 803 |
+
[16N+]
|
| 804 |
+
[SnH2+]
|
| 805 |
+
[PH4]
|
| 806 |
+
[11C@H]
|
| 807 |
+
[122I]
|
| 808 |
+
[Re-2]
|
| 809 |
+
[RuH2+2]
|
| 810 |
+
[ZrH]
|
| 811 |
+
[Bi-]
|
| 812 |
+
[Pr+]
|
| 813 |
+
[Rn]
|
| 814 |
+
[Fr]
|
| 815 |
+
[36Cl]
|
| 816 |
+
[18o]
|
| 817 |
+
[YH]
|
| 818 |
+
[79Br]
|
| 819 |
+
[121I]
|
| 820 |
+
[113In+3]
|
| 821 |
+
[InH4-]
|
| 822 |
+
[TaH]
|
| 823 |
+
[RhH2]
|
| 824 |
+
[Ta-]
|
| 825 |
+
[67Ga]
|
| 826 |
+
[ZnH+]
|
| 827 |
+
[SnH2-]
|
| 828 |
+
[OsH2]
|
| 829 |
+
[16F]
|
| 830 |
+
[FeH2]
|
| 831 |
+
[14O]
|
| 832 |
+
[PbH2+2]
|
| 833 |
+
[BH2]
|
| 834 |
+
[6H]
|
| 835 |
+
[125Te]
|
| 836 |
+
[197Hg]
|
| 837 |
+
[TaH2]
|
| 838 |
+
[TaH3]
|
| 839 |
+
[76As]
|
| 840 |
+
[Nb-2]
|
| 841 |
+
[14N+]
|
| 842 |
+
[125I-]
|
| 843 |
+
[33S]
|
| 844 |
+
[IH2+2]
|
| 845 |
+
[NH2]
|
| 846 |
+
[PtH2]
|
| 847 |
+
[MnH]
|
| 848 |
+
[19C]
|
| 849 |
+
[17F]
|
| 850 |
+
[1H-]
|
| 851 |
+
[SnH4+2]
|
| 852 |
+
[Mn-2]
|
| 853 |
+
[15NH2+]
|
| 854 |
+
[TiH2]
|
| 855 |
+
[ReH7]
|
| 856 |
+
[Cd-2]
|
| 857 |
+
[Fe-3]
|
| 858 |
+
[SH2]
|
| 859 |
+
[17O-]
|
| 860 |
+
[siH-]
|
| 861 |
+
[CoH+]
|
| 862 |
+
[VH]
|
| 863 |
+
[10BH]
|
| 864 |
+
[Ru-3]
|
| 865 |
+
[13O]
|
| 866 |
+
[5H]
|
| 867 |
+
[CoH]
|
| 868 |
+
[PH5]
|
| 869 |
+
[15n-]
|
| 870 |
+
[153Gd]
|
| 871 |
+
[12C@]
|
| 872 |
+
[11CH3-]
|
| 873 |
+
[IrH3]
|
| 874 |
+
[RuH3]
|
| 875 |
+
[74Se]
|
| 876 |
+
[Se@]
|
| 877 |
+
[Hf+]
|
| 878 |
+
[77Se]
|
| 879 |
+
[166Ho]
|
| 880 |
+
[59Fe+2]
|
| 881 |
+
[203Hg]
|
| 882 |
+
[18OH-]
|
| 883 |
+
[8CH]
|
| 884 |
+
[12C@@]
|
| 885 |
+
[11CH4]
|
| 886 |
+
[15C]
|
| 887 |
+
[249Cf]
|
| 888 |
+
[PbH4]
|
| 889 |
+
[64Zn]
|
| 890 |
+
[PH3]
|
| 891 |
+
[99Tc+]
|
| 892 |
+
[14c-]
|
| 893 |
+
[149Pm]
|
| 894 |
+
[IrH4]
|
| 895 |
+
[Se@@]
|
| 896 |
+
[13OH]
|
| 897 |
+
[14CH3-]
|
| 898 |
+
[28Si]
|
| 899 |
+
[Rh-2]
|
| 900 |
+
[Fe-2]
|
| 901 |
+
[131I-]
|
| 902 |
+
[51Cr]
|
| 903 |
+
[62Cu+2]
|
| 904 |
+
[81Br]
|
| 905 |
+
[121Sb]
|
| 906 |
+
[7Li]
|
| 907 |
+
[89Zr+4]
|
| 908 |
+
[SbH3+]
|
| 909 |
+
[11C@@H]
|
| 910 |
+
[98Tc]
|
| 911 |
+
[59Fe+3]
|
| 912 |
+
[BiH2+]
|
| 913 |
+
[SbH+]
|
| 914 |
+
[TiH]
|
| 915 |
+
[14NH3]
|
| 916 |
+
[15OH]
|
| 917 |
+
[119Sn]
|
| 918 |
+
[201Hg]
|
| 919 |
+
[MnH+]
|
| 920 |
+
[201Tl]
|
| 921 |
+
[51Cr+3]
|
| 922 |
+
[123I-]
|
| 923 |
+
[MoH]
|
| 924 |
+
[AlH6-3]
|
| 925 |
+
[MnH2]
|
| 926 |
+
[WH3]
|
| 927 |
+
[213Bi+3]
|
| 928 |
+
[SnH2+2]
|
| 929 |
+
[123IH]
|
| 930 |
+
[13CH+]
|
| 931 |
+
[Zr-]
|
| 932 |
+
[74As]
|
| 933 |
+
[13C+]
|
| 934 |
+
[32P+]
|
| 935 |
+
[KrH]
|
| 936 |
+
[SiH+2]
|
| 937 |
+
[ClH3+2]
|
| 938 |
+
[13NH]
|
| 939 |
+
[9CH2]
|
| 940 |
+
[ZrH2+2]
|
| 941 |
+
[87Sr+2]
|
| 942 |
+
[35s]
|
| 943 |
+
[239Pu]
|
| 944 |
+
[198Au]
|
| 945 |
+
[241Am]
|
| 946 |
+
[203Hg+2]
|
| 947 |
+
[V+]
|
| 948 |
+
[YH2]
|
| 949 |
+
[SH5]
|
| 950 |
+
[195Pt]
|
| 951 |
+
[203Pb]
|
| 952 |
+
[RuH4]
|
| 953 |
+
[ThH2]
|
| 954 |
+
[AuH]
|
| 955 |
+
[66Ga+3]
|
| 956 |
+
[11B-]
|
| 957 |
+
[F]
|
| 958 |
+
[24Na+]
|
| 959 |
+
[85Sr+2]
|
| 960 |
+
[201Tl+]
|
| 961 |
+
[14CH4]
|
| 962 |
+
[32S]
|
| 963 |
+
[TeH2+]
|
| 964 |
+
[ClH2+3]
|
| 965 |
+
[AgH]
|
| 966 |
+
[Ge@H]
|
| 967 |
+
[44Ca+2]
|
| 968 |
+
[Os-]
|
| 969 |
+
[31P]
|
| 970 |
+
[15nH+]
|
| 971 |
+
[SbH4]
|
| 972 |
+
[TiH+]
|
| 973 |
+
[Ba+]
|
| 974 |
+
[57Co+2]
|
| 975 |
+
[Ta+]
|
| 976 |
+
[125IH]
|
| 977 |
+
[77As]
|
| 978 |
+
[129I]
|
| 979 |
+
[Fe-4]
|
| 980 |
+
[Ta-2]
|
| 981 |
+
[19O]
|
| 982 |
+
[12O]
|
| 983 |
+
[BiH3]
|
| 984 |
+
[237Np]
|
| 985 |
+
[252Cf]
|
| 986 |
+
[86Y]
|
| 987 |
+
[Cr-2]
|
| 988 |
+
[89Y]
|
| 989 |
+
[195Pt+2]
|
| 990 |
+
[si+2]
|
| 991 |
+
[58Fe+2]
|
| 992 |
+
[Hs]
|
| 993 |
+
[S@@H]
|
| 994 |
+
[OsH6]
|
| 995 |
+
[GdH2]
|
| 996 |
+
[IH3]
|
| 997 |
+
[8CH4]
|
| 998 |
+
[164Dy+3]
|
| 999 |
+
[47Ca+2]
|
| 1000 |
+
[57Co]
|
| 1001 |
+
[NbH2]
|
| 1002 |
+
[ReH2]
|
| 1003 |
+
[ZnH2]
|
| 1004 |
+
[CrH2]
|
| 1005 |
+
[17NH]
|
| 1006 |
+
[ZrH3]
|
| 1007 |
+
[RhH3]
|
| 1008 |
+
[12C-]
|
| 1009 |
+
[18O+]
|
| 1010 |
+
[Bi-2]
|
| 1011 |
+
[ClH4+3]
|
| 1012 |
+
[Ni-3]
|
| 1013 |
+
[Ag-]
|
| 1014 |
+
[111In-]
|
| 1015 |
+
[Mo-2]
|
| 1016 |
+
[55Fe+3]
|
| 1017 |
+
[204Hg+]
|
| 1018 |
+
[35Cl-]
|
| 1019 |
+
[211Pb]
|
| 1020 |
+
[75Ge]
|
| 1021 |
+
[8B]
|
| 1022 |
+
[TeH3]
|
| 1023 |
+
[SnH3+]
|
| 1024 |
+
[Zr-3]
|
| 1025 |
+
[28F]
|
| 1026 |
+
[249Bk]
|
| 1027 |
+
[169Yb]
|
| 1028 |
+
[34SH]
|
| 1029 |
+
[6Li]
|
| 1030 |
+
[94Tc]
|
| 1031 |
+
[197Au]
|
| 1032 |
+
[195Pt+4]
|
| 1033 |
+
[169Yb+3]
|
| 1034 |
+
[32Cl]
|
| 1035 |
+
[82Se]
|
| 1036 |
+
[159Gd+3]
|
| 1037 |
+
[213Bi]
|
| 1038 |
+
[CoH+2]
|
| 1039 |
+
[36S]
|
| 1040 |
+
[35P]
|
| 1041 |
+
[Ru-4]
|
| 1042 |
+
[Cr-3]
|
| 1043 |
+
[60Co]
|
| 1044 |
+
[1H+]
|
| 1045 |
+
[18CH2]
|
| 1046 |
+
[Cd-]
|
| 1047 |
+
[152Sm+3]
|
| 1048 |
+
[106Ru]
|
| 1049 |
+
[238Pu]
|
| 1050 |
+
[220Rn]
|
| 1051 |
+
[45Ca+2]
|
| 1052 |
+
[89Sr+2]
|
| 1053 |
+
[239Np]
|
| 1054 |
+
[90Sr+2]
|
| 1055 |
+
[137Cs+]
|
| 1056 |
+
[165Dy]
|
| 1057 |
+
[68GaH3]
|
| 1058 |
+
[65Zn+2]
|
| 1059 |
+
[89Zr]
|
| 1060 |
+
[BiH2+2]
|
| 1061 |
+
[62Cu]
|
| 1062 |
+
[165Dy+3]
|
| 1063 |
+
[238U]
|
| 1064 |
+
[105Rh+3]
|
| 1065 |
+
[70Zn]
|
| 1066 |
+
[12B]
|
| 1067 |
+
[12OH]
|
| 1068 |
+
[18CH]
|
| 1069 |
+
[17CH]
|
| 1070 |
+
[OsH3]
|
| 1071 |
+
[SbH-]
|
| 1072 |
+
[SH6]
|
| 1073 |
+
[AlH2-2]
|
| 1074 |
+
[42K]
|
| 1075 |
+
[76Br-]
|
| 1076 |
+
[71As]
|
| 1077 |
+
[NbH3]
|
| 1078 |
+
[ReH3]
|
| 1079 |
+
[OsH-]
|
| 1080 |
+
[WH4]
|
| 1081 |
+
[MoH3]
|
| 1082 |
+
[OsH4]
|
| 1083 |
+
[RuH6]
|
| 1084 |
+
[PtH3]
|
| 1085 |
+
[CuH2]
|
| 1086 |
+
[CoH3]
|
| 1087 |
+
[TiH4]
|
| 1088 |
+
[64Zn+2]
|
| 1089 |
+
[Si-2]
|
| 1090 |
+
[79BrH]
|
| 1091 |
+
[14CH2-]
|
| 1092 |
+
[PtH2+2]
|
| 1093 |
+
[Os-3]
|
| 1094 |
+
[29Si]
|
| 1095 |
+
[Ti-]
|
| 1096 |
+
[Se+6]
|
| 1097 |
+
[22Na+]
|
| 1098 |
+
[42K+]
|
| 1099 |
+
[131Cs+]
|
| 1100 |
+
[86Rb+]
|
| 1101 |
+
[134Cs+]
|
| 1102 |
+
[209Po]
|
| 1103 |
+
[208Po]
|
| 1104 |
+
[81Rb+]
|
| 1105 |
+
[203Tl+]
|
| 1106 |
+
[Zr-4]
|
| 1107 |
+
[148Sm]
|
| 1108 |
+
[147Sm]
|
| 1109 |
+
[37Cl-]
|
| 1110 |
+
[12CH4]
|
| 1111 |
+
[Ge@@H]
|
| 1112 |
+
[63Cu]
|
| 1113 |
+
[13CH2+]
|
| 1114 |
+
[AsH2-]
|
| 1115 |
+
[CeH]
|
| 1116 |
+
[SnH-]
|
| 1117 |
+
[UH]
|
| 1118 |
+
[9c]
|
| 1119 |
+
[21CH3]
|
| 1120 |
+
[TeH+]
|
| 1121 |
+
[57Co+3]
|
| 1122 |
+
[8BH2]
|
| 1123 |
+
[12BH2]
|
| 1124 |
+
[19BH2]
|
| 1125 |
+
[9BH2]
|
| 1126 |
+
[YbH2]
|
| 1127 |
+
[CrH+2]
|
| 1128 |
+
[208Bi]
|
| 1129 |
+
[152Gd]
|
| 1130 |
+
[61Cu]
|
| 1131 |
+
[115In]
|
| 1132 |
+
[60Co+2]
|
| 1133 |
+
[13NH2-]
|
| 1134 |
+
[120I]
|
| 1135 |
+
[18OH2]
|
| 1136 |
+
[75SeH]
|
| 1137 |
+
[SbH2+]
|
| 1138 |
+
[144Ce]
|
| 1139 |
+
[16n]
|
| 1140 |
+
[113In]
|
| 1141 |
+
[22nH]
|
| 1142 |
+
[129I-]
|
| 1143 |
+
[InH3]
|
| 1144 |
+
[32PH3]
|
| 1145 |
+
[234U]
|
| 1146 |
+
[235U]
|
| 1147 |
+
[59Fe]
|
| 1148 |
+
[82Rb+]
|
| 1149 |
+
[65Zn]
|
| 1150 |
+
[244Cm]
|
| 1151 |
+
[147Pm]
|
| 1152 |
+
[91Y]
|
| 1153 |
+
[237Pu]
|
| 1154 |
+
[231Pa]
|
| 1155 |
+
[253Cf]
|
| 1156 |
+
[127Te]
|
| 1157 |
+
[187Re]
|
| 1158 |
+
[236Np]
|
| 1159 |
+
[235Np]
|
| 1160 |
+
[72Zn]
|
| 1161 |
+
[253Es]
|
| 1162 |
+
[159Dy]
|
| 1163 |
+
[62Zn]
|
| 1164 |
+
[101Tc]
|
| 1165 |
+
[149Tb]
|
| 1166 |
+
[124I-]
|
| 1167 |
+
[SeH3+]
|
| 1168 |
+
[210Pb]
|
| 1169 |
+
[40K]
|
| 1170 |
+
[210Po]
|
| 1171 |
+
[214Pb]
|
| 1172 |
+
[218Po]
|
| 1173 |
+
[214Po]
|
| 1174 |
+
[7Be]
|
| 1175 |
+
[212Pb]
|
| 1176 |
+
[205Pb]
|
| 1177 |
+
[209Pb]
|
| 1178 |
+
[123Te]
|
| 1179 |
+
[202Pb]
|
| 1180 |
+
[72As]
|
| 1181 |
+
[201Pb]
|
| 1182 |
+
[70As]
|
| 1183 |
+
[73Ge]
|
| 1184 |
+
[200Pb]
|
| 1185 |
+
[198Pb]
|
| 1186 |
+
[66Ga]
|
| 1187 |
+
[73Se]
|
| 1188 |
+
[195Pb]
|
| 1189 |
+
[199Pb]
|
| 1190 |
+
[144Ce+3]
|
| 1191 |
+
[235U+2]
|
| 1192 |
+
[90Tc]
|
| 1193 |
+
[114In+3]
|
| 1194 |
+
[128I]
|
| 1195 |
+
[100Tc+]
|
| 1196 |
+
[82Br-]
|
| 1197 |
+
[191Pt+2]
|
| 1198 |
+
[191Pt+4]
|
| 1199 |
+
[193Pt+4]
|
| 1200 |
+
[31PH3]
|
| 1201 |
+
[125I+2]
|
| 1202 |
+
[131I+2]
|
| 1203 |
+
[125Te+4]
|
| 1204 |
+
[82Sr+2]
|
| 1205 |
+
[149Sm]
|
| 1206 |
+
[81BrH]
|
| 1207 |
+
[129Xe]
|
| 1208 |
+
[193Pt+2]
|
| 1209 |
+
[123I+2]
|
| 1210 |
+
[Cr-]
|
| 1211 |
+
[Co-]
|
| 1212 |
+
[227Th+4]
|
| 1213 |
+
[249Cf+3]
|
| 1214 |
+
[252Cf+3]
|
| 1215 |
+
[187Os]
|
| 1216 |
+
[16O-]
|
| 1217 |
+
[17O+]
|
| 1218 |
+
[16OH-]
|
| 1219 |
+
[98Tc+7]
|
| 1220 |
+
[58Co+2]
|
| 1221 |
+
[69Ga+3]
|
| 1222 |
+
[57Fe+2]
|
| 1223 |
+
[43K+]
|
| 1224 |
+
[16C]
|
| 1225 |
+
[52Fe+3]
|
| 1226 |
+
[SeH5]
|
| 1227 |
+
[194Pb]
|
| 1228 |
+
[196Pb]
|
| 1229 |
+
[197Pb]
|
| 1230 |
+
[213Pb]
|
| 1231 |
+
[9B]
|
| 1232 |
+
[19B]
|
| 1233 |
+
[11CH-]
|
| 1234 |
+
[9CH]
|
| 1235 |
+
[20OH]
|
| 1236 |
+
[25OH]
|
| 1237 |
+
[8cH]
|
| 1238 |
+
[TiH+3]
|
| 1239 |
+
[SnH6+3]
|
| 1240 |
+
[N@H+]
|
| 1241 |
+
[ZnH]
|
| 1242 |
+
[VH3]
|
| 1243 |
+
[52Mn+2]
|
| 1244 |
+
[64Ga]
|
| 1245 |
+
[13B]
|
| 1246 |
+
[216Bi]
|
| 1247 |
+
[117Sn+2]
|
| 1248 |
+
[232Th]
|
| 1249 |
+
[SnH+2]
|
| 1250 |
+
[BiH5]
|
| 1251 |
+
[77Kr]
|
| 1252 |
+
[103Cd]
|
| 1253 |
+
[62Ni]
|
| 1254 |
+
[LaH3]
|
| 1255 |
+
[SmH3]
|
| 1256 |
+
[EuH3]
|
| 1257 |
+
[MoH5]
|
| 1258 |
+
[64Ni]
|
| 1259 |
+
[66Zn]
|
| 1260 |
+
[68Zn]
|
| 1261 |
+
[186W]
|
| 1262 |
+
[FeH4]
|
| 1263 |
+
[MoH4]
|
| 1264 |
+
[HgH2]
|
| 1265 |
+
[15NH2-]
|
| 1266 |
+
[UH2]
|
| 1267 |
+
[204Hg]
|
| 1268 |
+
[GaH4-]
|
| 1269 |
+
[ThH4]
|
| 1270 |
+
[WH6]
|
| 1271 |
+
[PtH4]
|
| 1272 |
+
[VH2]
|
| 1273 |
+
[UH3]
|
| 1274 |
+
[FeH3]
|
| 1275 |
+
[RuH5]
|
| 1276 |
+
[BiH4]
|
| 1277 |
+
[80Br-]
|
| 1278 |
+
[CeH3]
|
| 1279 |
+
[37ClH]
|
| 1280 |
+
[157Gd+3]
|
| 1281 |
+
[205Tl]
|
| 1282 |
+
[203Tl]
|
| 1283 |
+
[62Cu+]
|
| 1284 |
+
[64Cu+]
|
| 1285 |
+
[61Cu+]
|
| 1286 |
+
[37SH2]
|
| 1287 |
+
[30Si]
|
| 1288 |
+
[28Al]
|
| 1289 |
+
[19OH2]
|
| 1290 |
+
[8He]
|
| 1291 |
+
[6He]
|
| 1292 |
+
[153Pm]
|
| 1293 |
+
[209Bi]
|
| 1294 |
+
[66Zn+2]
|
| 1295 |
+
[10CH4]
|
| 1296 |
+
[191Ir]
|
| 1297 |
+
[66Cu]
|
| 1298 |
+
[16O+]
|
| 1299 |
+
[25O]
|
| 1300 |
+
[10c]
|
| 1301 |
+
[Co-3]
|
| 1302 |
+
[Sn@@]
|
| 1303 |
+
[17OH-]
|
| 1304 |
+
[206Po]
|
| 1305 |
+
[204Po]
|
| 1306 |
+
[202Po]
|
| 1307 |
+
[201Po]
|
| 1308 |
+
[200Po]
|
| 1309 |
+
[199Po]
|
| 1310 |
+
[198Po]
|
| 1311 |
+
[197Po]
|
| 1312 |
+
[196Po]
|
| 1313 |
+
[195Po]
|
| 1314 |
+
[194Po]
|
| 1315 |
+
[193Po]
|
| 1316 |
+
[192Po]
|
| 1317 |
+
[191Po]
|
| 1318 |
+
[190Po]
|
| 1319 |
+
[217Po]
|
| 1320 |
+
[BiH4-]
|
| 1321 |
+
[TeH4]
|
| 1322 |
+
[222Ra]
|
| 1323 |
+
[62Ga]
|
| 1324 |
+
[39Ar]
|
| 1325 |
+
[144Sm]
|
| 1326 |
+
[58Fe]
|
| 1327 |
+
[153Eu]
|
| 1328 |
+
[85Rb]
|
| 1329 |
+
[171Yb]
|
| 1330 |
+
[172Yb]
|
| 1331 |
+
[114Cd]
|
| 1332 |
+
[51Fe]
|
| 1333 |
+
[142Ce]
|
| 1334 |
+
[207Tl]
|
| 1335 |
+
[92Mo]
|
| 1336 |
+
[115Sn]
|
| 1337 |
+
[140Ce]
|
| 1338 |
+
[202Hg]
|
| 1339 |
+
[180W]
|
| 1340 |
+
[182W]
|
| 1341 |
+
[183W]
|
| 1342 |
+
[184W]
|
| 1343 |
+
[96Mo]
|
| 1344 |
+
[47Ti]
|
| 1345 |
+
[111Cd]
|
| 1346 |
+
[143Nd]
|
| 1347 |
+
[145Nd]
|
| 1348 |
+
[126Te]
|
| 1349 |
+
[128Te]
|
| 1350 |
+
[130Te]
|
| 1351 |
+
[185Re]
|
| 1352 |
+
[97Mo]
|
| 1353 |
+
[98Mo]
|
| 1354 |
+
[183Re]
|
| 1355 |
+
[52V]
|
| 1356 |
+
[80Se]
|
| 1357 |
+
[87Kr]
|
| 1358 |
+
[137Xe]
|
| 1359 |
+
[196Au]
|
| 1360 |
+
[146Ce]
|
| 1361 |
+
[88Kr]
|
| 1362 |
+
[51Ti]
|
| 1363 |
+
[138Xe]
|
| 1364 |
+
[112Cd]
|
| 1365 |
+
[116Sn]
|
| 1366 |
+
[120Sn]
|
| 1367 |
+
[28SiH3]
|
| 1368 |
+
[35S-]
|
| 1369 |
+
[15NH-]
|
| 1370 |
+
[13CH3+]
|
| 1371 |
+
[34S+]
|
| 1372 |
+
[34s]
|
| 1373 |
+
[SiH4-]
|
| 1374 |
+
[100Tc+5]
|
| 1375 |
+
[NiH2+2]
|
| 1376 |
+
[239Th]
|
| 1377 |
+
[186Lu]
|
| 1378 |
+
[AuH3]
|
| 1379 |
+
[I@@-]
|
| 1380 |
+
[XeH2]
|
| 1381 |
+
[B+]
|
| 1382 |
+
[16CH2]
|
| 1383 |
+
[8C]
|
| 1384 |
+
[TaH5]
|
| 1385 |
+
[FeH4-]
|
| 1386 |
+
[19C@H]
|
| 1387 |
+
[10NH]
|
| 1388 |
+
[FeH6-3]
|
| 1389 |
+
[22CH]
|
| 1390 |
+
[25N]
|
| 1391 |
+
[25N+]
|
| 1392 |
+
[25N-]
|
| 1393 |
+
[21CH2]
|
| 1394 |
+
[18cH]
|
| 1395 |
+
[113I]
|
| 1396 |
+
[ScH3]
|
| 1397 |
+
[30PH3]
|
| 1398 |
+
[43Ca+2]
|
| 1399 |
+
[41Ca+2]
|
| 1400 |
+
[106Cd]
|
| 1401 |
+
[122Sn]
|
| 1402 |
+
[18CH3]
|
| 1403 |
+
[58Co+3]
|
| 1404 |
+
[98Tc+4]
|
| 1405 |
+
[70Ge]
|
| 1406 |
+
[76Ge]
|
| 1407 |
+
[108Cd]
|
| 1408 |
+
[116Cd]
|
| 1409 |
+
[130Xe]
|
| 1410 |
+
[94Mo]
|
| 1411 |
+
[124Sn]
|
| 1412 |
+
[186Os]
|
| 1413 |
+
[188Os]
|
| 1414 |
+
[190Os]
|
| 1415 |
+
[192Os]
|
| 1416 |
+
[106Pd]
|
| 1417 |
+
[110Pd]
|
| 1418 |
+
[120Te]
|
| 1419 |
+
[132Ba]
|
| 1420 |
+
[134Ba]
|
| 1421 |
+
[136Ba]
|
| 1422 |
+
[136Ce]
|
| 1423 |
+
[138Ce]
|
| 1424 |
+
[156Dy]
|
| 1425 |
+
[158Dy]
|
| 1426 |
+
[160Dy]
|
| 1427 |
+
[163Dy]
|
| 1428 |
+
[162Er]
|
| 1429 |
+
[164Er]
|
| 1430 |
+
[167Er]
|
| 1431 |
+
[176Hf]
|
| 1432 |
+
[26Mg]
|
| 1433 |
+
[144Nd]
|
| 1434 |
+
[150Nd]
|
| 1435 |
+
[41K]
|
| 1436 |
+
[46Ti]
|
| 1437 |
+
[48Ti]
|
| 1438 |
+
[49Ti]
|
| 1439 |
+
[50Ti]
|
| 1440 |
+
[170Yb]
|
| 1441 |
+
[173Yb]
|
| 1442 |
+
[91Zr]
|
| 1443 |
+
[92Zr]
|
| 1444 |
+
[96Zr]
|
| 1445 |
+
[34S-]
|
| 1446 |
+
[CuH2-]
|
| 1447 |
+
[38Cl]
|
| 1448 |
+
[25Mg]
|
| 1449 |
+
[51V]
|
| 1450 |
+
[93Nb]
|
| 1451 |
+
[95Mo]
|
| 1452 |
+
[45Sc]
|
| 1453 |
+
[123Sb]
|
| 1454 |
+
[139La]
|
| 1455 |
+
[9Be]
|
| 1456 |
+
[99Y+3]
|
| 1457 |
+
[99Y]
|
| 1458 |
+
[156Ho]
|
| 1459 |
+
[67Zn]
|
| 1460 |
+
[144Ce+4]
|
| 1461 |
+
[210Tl]
|
| 1462 |
+
[42Ca]
|
| 1463 |
+
[54Fe]
|
| 1464 |
+
[193Ir]
|
| 1465 |
+
[92Nb]
|
| 1466 |
+
[141Cs]
|
| 1467 |
+
[52Cr]
|
| 1468 |
+
[35ClH]
|
| 1469 |
+
[46Ca]
|
| 1470 |
+
[139Cs]
|
| 1471 |
+
[65Cu]
|
| 1472 |
+
[71Ga]
|
| 1473 |
+
[60Ni]
|
| 1474 |
+
[16NH3]
|
| 1475 |
+
[148Nd]
|
| 1476 |
+
[72Ge]
|
| 1477 |
+
[161Dy]
|
| 1478 |
+
[49Ca]
|
| 1479 |
+
[43Ca]
|
| 1480 |
+
[8Be]
|
| 1481 |
+
[48Ca]
|
| 1482 |
+
[44Ca]
|
| 1483 |
+
[120Xe]
|
| 1484 |
+
[80Rb]
|
| 1485 |
+
[215At]
|
| 1486 |
+
[180Re]
|
| 1487 |
+
[146Sm]
|
| 1488 |
+
[19Ne]
|
| 1489 |
+
[74Kr]
|
| 1490 |
+
[134La]
|
| 1491 |
+
[76Kr]
|
| 1492 |
+
[219Fr]
|
| 1493 |
+
[121Xe]
|
| 1494 |
+
[220Fr]
|
| 1495 |
+
[216At]
|
| 1496 |
+
[223Ac]
|
| 1497 |
+
[218At]
|
| 1498 |
+
[37Ar]
|
| 1499 |
+
[135I]
|
| 1500 |
+
[110Cd]
|
| 1501 |
+
[94Tc+7]
|
| 1502 |
+
[86Y+3]
|
| 1503 |
+
[135I-]
|
| 1504 |
+
[15O-2]
|
| 1505 |
+
[151Eu+3]
|
| 1506 |
+
[161Tb+3]
|
| 1507 |
+
[197Hg+2]
|
| 1508 |
+
[109Cd+2]
|
| 1509 |
+
[191Os+4]
|
| 1510 |
+
[170Tm+3]
|
| 1511 |
+
[205Bi+3]
|
| 1512 |
+
[233U+4]
|
| 1513 |
+
[126Sb+3]
|
| 1514 |
+
[127Sb+3]
|
| 1515 |
+
[132Cs+]
|
| 1516 |
+
[136Eu+3]
|
| 1517 |
+
[136Eu]
|
| 1518 |
+
[125Sn+4]
|
| 1519 |
+
[175Yb+3]
|
| 1520 |
+
[100Mo]
|
| 1521 |
+
[22Ne]
|
| 1522 |
+
[13c-]
|
| 1523 |
+
[13NH4+]
|
| 1524 |
+
[17C]
|
| 1525 |
+
[9C]
|
| 1526 |
+
[31S]
|
| 1527 |
+
[31SH]
|
| 1528 |
+
[133I]
|
| 1529 |
+
[126I]
|
| 1530 |
+
[36SH]
|
| 1531 |
+
[30S]
|
| 1532 |
+
[32SH]
|
| 1533 |
+
[19CH2]
|
| 1534 |
+
[19c]
|
| 1535 |
+
[18c]
|
| 1536 |
+
[15F]
|
| 1537 |
+
[10C]
|
| 1538 |
+
[RuH-]
|
| 1539 |
+
[62Zn+2]
|
| 1540 |
+
[32ClH]
|
| 1541 |
+
[33ClH]
|
| 1542 |
+
[78BrH]
|
| 1543 |
+
[12Li+]
|
| 1544 |
+
[12Li]
|
| 1545 |
+
[233Ra]
|
| 1546 |
+
[68Ge+4]
|
| 1547 |
+
[44Sc+3]
|
| 1548 |
+
[91Y+3]
|
| 1549 |
+
[106Ru+3]
|
| 1550 |
+
[PoH2]
|
| 1551 |
+
[AtH]
|
| 1552 |
+
[55Fe]
|
| 1553 |
+
[233U]
|
| 1554 |
+
[210PoH2]
|
| 1555 |
+
[230Th]
|
| 1556 |
+
[228Th]
|
| 1557 |
+
[222Rn]
|
| 1558 |
+
[35SH2]
|
| 1559 |
+
[227Th]
|
| 1560 |
+
[192Ir]
|
| 1561 |
+
[133Xe]
|
| 1562 |
+
[81Kr]
|
| 1563 |
+
[95Zr]
|
| 1564 |
+
[240Pu]
|
| 1565 |
+
[54Mn]
|
| 1566 |
+
[103Ru]
|
| 1567 |
+
[95Nb]
|
| 1568 |
+
[109Cd]
|
| 1569 |
+
[141Ce]
|
| 1570 |
+
[85Kr]
|
| 1571 |
+
[110Ag]
|
| 1572 |
+
[58Co]
|
| 1573 |
+
[241Pu]
|
| 1574 |
+
[234Th]
|
| 1575 |
+
[140La]
|
| 1576 |
+
[63Ni]
|
| 1577 |
+
[152Eu]
|
| 1578 |
+
[132IH]
|
| 1579 |
+
[226Rn]
|
| 1580 |
+
[154Eu]
|
| 1581 |
+
[36ClH]
|
| 1582 |
+
[228Ac]
|
| 1583 |
+
[155Eu]
|
| 1584 |
+
[106Rh]
|
| 1585 |
+
[243Am]
|
| 1586 |
+
[227Ac]
|
| 1587 |
+
[243Cm]
|
| 1588 |
+
[236U]
|
| 1589 |
+
[144Pr]
|
| 1590 |
+
[232U]
|
| 1591 |
+
[32SH2]
|
| 1592 |
+
[88Y]
|
| 1593 |
+
[82BrH]
|
| 1594 |
+
[135IH]
|
| 1595 |
+
[242Cm]
|
| 1596 |
+
[115Cd]
|
| 1597 |
+
[242Pu]
|
| 1598 |
+
[46Sc]
|
| 1599 |
+
[56Mn]
|
| 1600 |
+
[234Pa]
|
| 1601 |
+
[41Ar]
|
| 1602 |
+
[147Nd]
|
| 1603 |
+
[187W]
|
| 1604 |
+
[151Sm]
|
| 1605 |
+
[59Ni]
|
| 1606 |
+
[233Pa]
|
| 1607 |
+
[52Mn]
|
| 1608 |
+
[94Nb]
|
| 1609 |
+
[219Rn]
|
| 1610 |
+
[236Pu]
|
| 1611 |
+
[13NH3]
|
| 1612 |
+
[93Zr]
|
| 1613 |
+
[51Cr+6]
|
| 1614 |
+
[TlH3]
|
| 1615 |
+
[123Xe]
|
| 1616 |
+
[160Tb]
|
| 1617 |
+
[170Tm]
|
| 1618 |
+
[182Ta]
|
| 1619 |
+
[175Yb]
|
| 1620 |
+
[93Mo]
|
| 1621 |
+
[143Ce]
|
| 1622 |
+
[191Os]
|
| 1623 |
+
[126IH]
|
| 1624 |
+
[48V]
|
| 1625 |
+
[113Cd]
|
| 1626 |
+
[47Sc]
|
| 1627 |
+
[181Hf]
|
| 1628 |
+
[185W]
|
| 1629 |
+
[143Pr]
|
| 1630 |
+
[191Pt]
|
| 1631 |
+
[181W]
|
| 1632 |
+
[33PH3]
|
| 1633 |
+
[97Ru]
|
| 1634 |
+
[97Tc]
|
| 1635 |
+
[111Ag]
|
| 1636 |
+
[169Er]
|
| 1637 |
+
[107Pd]
|
| 1638 |
+
[103Ru+2]
|
| 1639 |
+
[34SH2]
|
| 1640 |
+
[137Ce]
|
| 1641 |
+
[242Am]
|
| 1642 |
+
[117SnH2]
|
| 1643 |
+
[57Ni]
|
| 1644 |
+
[239U]
|
| 1645 |
+
[60Cu]
|
| 1646 |
+
[250Cf]
|
| 1647 |
+
[193Au]
|
| 1648 |
+
[69Zn]
|
| 1649 |
+
[55Co]
|
| 1650 |
+
[139Ce]
|
| 1651 |
+
[127Xe]
|
| 1652 |
+
[159Gd]
|
| 1653 |
+
[56Co]
|
| 1654 |
+
[177Hf]
|
| 1655 |
+
[244Pu]
|
| 1656 |
+
[38ClH]
|
| 1657 |
+
[142Pr]
|
| 1658 |
+
[199Hg]
|
| 1659 |
+
[179Hf]
|
| 1660 |
+
[178Hf]
|
| 1661 |
+
[237U]
|
| 1662 |
+
[156Eu]
|
| 1663 |
+
[157Eu]
|
| 1664 |
+
[105Ru]
|
| 1665 |
+
[171Tm]
|
| 1666 |
+
[199Au]
|
| 1667 |
+
[155Sm]
|
| 1668 |
+
[80BrH]
|
| 1669 |
+
[108Ag]
|
| 1670 |
+
[128IH]
|
| 1671 |
+
[48Sc]
|
| 1672 |
+
[45Ti]
|
| 1673 |
+
[176Lu]
|
| 1674 |
+
[121SnH2]
|
| 1675 |
+
[148Pm]
|
| 1676 |
+
[57Fe]
|
| 1677 |
+
[10BH3]
|
| 1678 |
+
[96Tc]
|
| 1679 |
+
[133IH]
|
| 1680 |
+
[143Pm]
|
| 1681 |
+
[105Rh]
|
| 1682 |
+
[130IH]
|
| 1683 |
+
[134IH]
|
| 1684 |
+
[131IH]
|
| 1685 |
+
[71Zn]
|
| 1686 |
+
[105Ag]
|
| 1687 |
+
[97Zr]
|
| 1688 |
+
[235Pu]
|
| 1689 |
+
[231Th]
|
| 1690 |
+
[109Pd]
|
| 1691 |
+
[93Y]
|
| 1692 |
+
[190Ir]
|
| 1693 |
+
[135Xe]
|
| 1694 |
+
[53Mn]
|
| 1695 |
+
[134Ce]
|
| 1696 |
+
[234Np]
|
| 1697 |
+
[240Am]
|
| 1698 |
+
[246Cf]
|
| 1699 |
+
[240Cm]
|
| 1700 |
+
[241Cm]
|
| 1701 |
+
[226Th]
|
| 1702 |
+
[39ClH]
|
| 1703 |
+
[229Th]
|
| 1704 |
+
[245Cm]
|
| 1705 |
+
[240U]
|
| 1706 |
+
[240Np]
|
| 1707 |
+
[249Cm]
|
| 1708 |
+
[243Pu]
|
| 1709 |
+
[145Pm]
|
| 1710 |
+
[199Pt]
|
| 1711 |
+
[246Bk]
|
| 1712 |
+
[193Pt]
|
| 1713 |
+
[230U]
|
| 1714 |
+
[250Cm]
|
| 1715 |
+
[44Ti]
|
| 1716 |
+
[175Hf]
|
| 1717 |
+
[254Fm]
|
| 1718 |
+
[255Fm]
|
| 1719 |
+
[257Fm]
|
| 1720 |
+
[92Y]
|
| 1721 |
+
[188Ir]
|
| 1722 |
+
[171Lu]
|
| 1723 |
+
[257Md]
|
| 1724 |
+
[247Bk]
|
| 1725 |
+
[121IH]
|
| 1726 |
+
[250Bk]
|
| 1727 |
+
[179Lu]
|
| 1728 |
+
[224Ac]
|
| 1729 |
+
[195Hg]
|
| 1730 |
+
[244Am]
|
| 1731 |
+
[246Pu]
|
| 1732 |
+
[194Au]
|
| 1733 |
+
[252Fm]
|
| 1734 |
+
[173Hf]
|
| 1735 |
+
[246Cm]
|
| 1736 |
+
[135Ce]
|
| 1737 |
+
[49Cr]
|
| 1738 |
+
[248Cf]
|
| 1739 |
+
[247Cm]
|
| 1740 |
+
[248Cm]
|
| 1741 |
+
[174Ta]
|
| 1742 |
+
[176Ta]
|
| 1743 |
+
[154Tb]
|
| 1744 |
+
[172Ta]
|
| 1745 |
+
[177Ta]
|
| 1746 |
+
[175Ta]
|
| 1747 |
+
[180Ta]
|
| 1748 |
+
[158Tb]
|
| 1749 |
+
[115Ag]
|
| 1750 |
+
[189Os]
|
| 1751 |
+
[251Cf]
|
| 1752 |
+
[145Pr]
|
| 1753 |
+
[147Pr]
|
| 1754 |
+
[76BrH]
|
| 1755 |
+
[102Rh]
|
| 1756 |
+
[238Np]
|
| 1757 |
+
[185Os]
|
| 1758 |
+
[246Am]
|
| 1759 |
+
[233Np]
|
| 1760 |
+
[166Dy]
|
| 1761 |
+
[254Es]
|
| 1762 |
+
[244Cf]
|
| 1763 |
+
[193Os]
|
| 1764 |
+
[245Am]
|
| 1765 |
+
[245Bk]
|
| 1766 |
+
[239Am]
|
| 1767 |
+
[238Am]
|
| 1768 |
+
[97Nb]
|
| 1769 |
+
[245Pu]
|
| 1770 |
+
[254Cf]
|
| 1771 |
+
[188W]
|
| 1772 |
+
[250Es]
|
| 1773 |
+
[251Es]
|
| 1774 |
+
[237Am]
|
| 1775 |
+
[182Hf]
|
| 1776 |
+
[258Md]
|
| 1777 |
+
[232Np]
|
| 1778 |
+
[238Cm]
|
| 1779 |
+
[60Fe]
|
| 1780 |
+
[109Pd+2]
|
| 1781 |
+
[234Pu]
|
| 1782 |
+
[141Ce+3]
|
| 1783 |
+
[136Nd]
|
| 1784 |
+
[136Pr]
|
| 1785 |
+
[173Ta]
|
| 1786 |
+
[110Ru]
|
| 1787 |
+
[147Tb]
|
| 1788 |
+
[253Fm]
|
| 1789 |
+
[139Nd]
|
| 1790 |
+
[178Re]
|
| 1791 |
+
[177Re]
|
| 1792 |
+
[200Au]
|
| 1793 |
+
[182Re]
|
| 1794 |
+
[156Tb]
|
| 1795 |
+
[155Tb]
|
| 1796 |
+
[157Tb]
|
| 1797 |
+
[161Tb]
|
| 1798 |
+
[161Ho]
|
| 1799 |
+
[167Tm]
|
| 1800 |
+
[173Lu]
|
| 1801 |
+
[179Ta]
|
| 1802 |
+
[171Er]
|
| 1803 |
+
[44Sc]
|
| 1804 |
+
[49Sc]
|
| 1805 |
+
[49V]
|
| 1806 |
+
[51Mn]
|
| 1807 |
+
[90Nb]
|
| 1808 |
+
[88Nb]
|
| 1809 |
+
[88Zr]
|
| 1810 |
+
[36SH2]
|
| 1811 |
+
[174Yb]
|
| 1812 |
+
[178Lu]
|
| 1813 |
+
[179W]
|
| 1814 |
+
[83BrH]
|
| 1815 |
+
[107Cd]
|
| 1816 |
+
[75BrH]
|
| 1817 |
+
[62Co]
|
| 1818 |
+
[48Cr]
|
| 1819 |
+
[63Zn]
|
| 1820 |
+
[102Ag]
|
| 1821 |
+
[154Sm]
|
| 1822 |
+
[168Er]
|
| 1823 |
+
[65Ni]
|
| 1824 |
+
[137La]
|
| 1825 |
+
[187Ir]
|
| 1826 |
+
[144Pm]
|
| 1827 |
+
[146Pm]
|
| 1828 |
+
[160Gd]
|
| 1829 |
+
[166Yb]
|
| 1830 |
+
[162Dy]
|
| 1831 |
+
[47V]
|
| 1832 |
+
[141Nd]
|
| 1833 |
+
[141Sm]
|
| 1834 |
+
[166Er]
|
| 1835 |
+
[150Sm]
|
| 1836 |
+
[146Eu]
|
| 1837 |
+
[149Eu]
|
| 1838 |
+
[174Lu]
|
| 1839 |
+
[17NH3]
|
| 1840 |
+
[102Ru]
|
| 1841 |
+
[170Hf]
|
| 1842 |
+
[188Pt]
|
| 1843 |
+
[61Ni]
|
| 1844 |
+
[56Ni]
|
| 1845 |
+
[149Gd]
|
| 1846 |
+
[151Gd]
|
| 1847 |
+
[141Pm]
|
| 1848 |
+
[147Gd]
|
| 1849 |
+
[146Gd]
|
| 1850 |
+
[161Er]
|
| 1851 |
+
[103Ag]
|
| 1852 |
+
[145Eu]
|
| 1853 |
+
[153Tb]
|
| 1854 |
+
[155Dy]
|
| 1855 |
+
[184Re]
|
| 1856 |
+
[180Os]
|
| 1857 |
+
[182Os]
|
| 1858 |
+
[186Pt]
|
| 1859 |
+
[181Os]
|
| 1860 |
+
[181Re]
|
| 1861 |
+
[151Tb]
|
| 1862 |
+
[178Ta]
|
| 1863 |
+
[178W]
|
| 1864 |
+
[189Pt]
|
| 1865 |
+
[194Hg]
|
| 1866 |
+
[145Sm]
|
| 1867 |
+
[150Tb]
|
| 1868 |
+
[132La]
|
| 1869 |
+
[158Gd]
|
| 1870 |
+
[104Ag]
|
| 1871 |
+
[193Hg]
|
| 1872 |
+
[94Ru]
|
| 1873 |
+
[137Pr]
|
| 1874 |
+
[155Ho]
|
| 1875 |
+
[117Cd]
|
| 1876 |
+
[99Ru]
|
| 1877 |
+
[146Nd]
|
| 1878 |
+
[218Rn]
|
| 1879 |
+
[95Y]
|
| 1880 |
+
[79Kr]
|
| 1881 |
+
[120IH]
|
| 1882 |
+
[138Pr]
|
| 1883 |
+
[100Pd]
|
| 1884 |
+
[166Tm]
|
| 1885 |
+
[90Mo]
|
| 1886 |
+
[151Nd]
|
| 1887 |
+
[231U]
|
| 1888 |
+
[138Nd]
|
| 1889 |
+
[89Nb]
|
| 1890 |
+
[98Nb]
|
| 1891 |
+
[162Ho]
|
| 1892 |
+
[142Sm]
|
| 1893 |
+
[186Ta]
|
| 1894 |
+
[104Tc]
|
| 1895 |
+
[184Ta]
|
| 1896 |
+
[185Ta]
|
| 1897 |
+
[170Er]
|
| 1898 |
+
[107Rh]
|
| 1899 |
+
[131La]
|
| 1900 |
+
[169Lu]
|
| 1901 |
+
[74BrH]
|
| 1902 |
+
[150Pm]
|
| 1903 |
+
[172Tm]
|
| 1904 |
+
[197Pt]
|
| 1905 |
+
[230Pu]
|
| 1906 |
+
[170Lu]
|
| 1907 |
+
[86Zr]
|
| 1908 |
+
[176W]
|
| 1909 |
+
[177W]
|
| 1910 |
+
[101Pd]
|
| 1911 |
+
[105Pd]
|
| 1912 |
+
[108Pd]
|
| 1913 |
+
[149Nd]
|
| 1914 |
+
[164Ho]
|
| 1915 |
+
[159Ho]
|
| 1916 |
+
[167Ho]
|
| 1917 |
+
[176Yb]
|
| 1918 |
+
[156Sm]
|
| 1919 |
+
[77BrH]
|
| 1920 |
+
[189Re]
|
| 1921 |
+
[99Rh]
|
| 1922 |
+
[100Rh]
|
| 1923 |
+
[151Pm]
|
| 1924 |
+
[232Pa]
|
| 1925 |
+
[228Pa]
|
| 1926 |
+
[230Pa]
|
| 1927 |
+
[66Ni]
|
| 1928 |
+
[194Os]
|
| 1929 |
+
[135La]
|
| 1930 |
+
[138La]
|
| 1931 |
+
[141La]
|
| 1932 |
+
[142La]
|
| 1933 |
+
[195Ir]
|
| 1934 |
+
[96Nb]
|
| 1935 |
+
[157Ho]
|
| 1936 |
+
[183Hf]
|
| 1937 |
+
[162Tm]
|
| 1938 |
+
[172Er]
|
| 1939 |
+
[148Eu]
|
| 1940 |
+
[150Eu]
|
| 1941 |
+
[15CH4]
|
| 1942 |
+
[89Kr]
|
| 1943 |
+
[143La]
|
| 1944 |
+
[58Ni]
|
| 1945 |
+
[61Co]
|
| 1946 |
+
[158Eu]
|
| 1947 |
+
[165Er]
|
| 1948 |
+
[167Yb]
|
| 1949 |
+
[173Tm]
|
| 1950 |
+
[175Tm]
|
| 1951 |
+
[172Hf]
|
| 1952 |
+
[172Lu]
|
| 1953 |
+
[93Tc]
|
| 1954 |
+
[177Yb]
|
| 1955 |
+
[124IH]
|
| 1956 |
+
[194Ir]
|
| 1957 |
+
[147Eu]
|
| 1958 |
+
[101Mo]
|
| 1959 |
+
[180Hf]
|
| 1960 |
+
[189Ir]
|
| 1961 |
+
[87Y]
|
| 1962 |
+
[43Sc]
|
| 1963 |
+
[195Au]
|
| 1964 |
+
[112Ag]
|
| 1965 |
+
[84BrH]
|
| 1966 |
+
[106Ag]
|
| 1967 |
+
[109Ag]
|
| 1968 |
+
[101Rh]
|
| 1969 |
+
[162Yb]
|
| 1970 |
+
[228Rn]
|
| 1971 |
+
[139Pr]
|
| 1972 |
+
[94Y]
|
| 1973 |
+
[201Au]
|
| 1974 |
+
[40PH3]
|
| 1975 |
+
[110Ag+]
|
| 1976 |
+
[104Cd]
|
| 1977 |
+
[133Ba+2]
|
| 1978 |
+
[226Ac]
|
| 1979 |
+
[145Gd]
|
| 1980 |
+
[186Ir]
|
| 1981 |
+
[184Ir]
|
| 1982 |
+
[224Rn]
|
| 1983 |
+
[185Ir]
|
| 1984 |
+
[182Ir]
|
| 1985 |
+
[184Hf]
|
| 1986 |
+
[200Pt]
|
| 1987 |
+
[227Pa]
|
| 1988 |
+
[178Yb]
|
| 1989 |
+
[72Br-]
|
| 1990 |
+
[72BrH]
|
| 1991 |
+
[248Am]
|
| 1992 |
+
[238Th]
|
| 1993 |
+
[161Gd]
|
| 1994 |
+
[35S-2]
|
| 1995 |
+
[107Ag]
|
| 1996 |
+
[FeH6-4]
|
| 1997 |
+
[89Sr]
|
| 1998 |
+
[SnH3-]
|
| 1999 |
+
[SeH3]
|
| 2000 |
+
[TeH3+]
|
| 2001 |
+
[SbH4+]
|
| 2002 |
+
[AsH4+]
|
| 2003 |
+
[4He]
|
| 2004 |
+
[AsH3-]
|
| 2005 |
+
[1HH]
|
| 2006 |
+
[3H+]
|
| 2007 |
+
[82Rb]
|
| 2008 |
+
[85Sr]
|
| 2009 |
+
[90Sr]
|
| 2010 |
+
[137Cs]
|
| 2011 |
+
[133Ba]
|
| 2012 |
+
[131Cs]
|
| 2013 |
+
[SbH5]
|
| 2014 |
+
[224Ra]
|
| 2015 |
+
[22Na]
|
| 2016 |
+
[210Bi]
|
| 2017 |
+
[214Bi]
|
| 2018 |
+
[228Ra]
|
| 2019 |
+
[127Sb]
|
| 2020 |
+
[136Cs]
|
| 2021 |
+
[125Sb]
|
| 2022 |
+
[134Cs]
|
| 2023 |
+
[140Ba]
|
| 2024 |
+
[45Ca]
|
| 2025 |
+
[206Pb]
|
| 2026 |
+
[207Pb]
|
| 2027 |
+
[24Na]
|
| 2028 |
+
[86Rb]
|
| 2029 |
+
[212Bi]
|
| 2030 |
+
[208Pb]
|
| 2031 |
+
[124Sb]
|
| 2032 |
+
[204Pb]
|
| 2033 |
+
[44K]
|
| 2034 |
+
[129Te]
|
| 2035 |
+
[113Sn]
|
| 2036 |
+
[204Tl]
|
| 2037 |
+
[87Sr]
|
| 2038 |
+
[208Tl]
|
| 2039 |
+
[87Rb]
|
| 2040 |
+
[47Ca]
|
| 2041 |
+
[135Cs]
|
| 2042 |
+
[216Po]
|
| 2043 |
+
[137Ba]
|
| 2044 |
+
[207Bi]
|
| 2045 |
+
[212Po]
|
| 2046 |
+
[79Se]
|
| 2047 |
+
[223Ra]
|
| 2048 |
+
[86Sr]
|
| 2049 |
+
[122Sb]
|
| 2050 |
+
[26Al]
|
| 2051 |
+
[32Si]
|
| 2052 |
+
[126Sn]
|
| 2053 |
+
[225Ra]
|
| 2054 |
+
[114In]
|
| 2055 |
+
[72Ga]
|
| 2056 |
+
[132Te]
|
| 2057 |
+
[10Be]
|
| 2058 |
+
[125Sn]
|
| 2059 |
+
[73As]
|
| 2060 |
+
[206Bi]
|
| 2061 |
+
[117Sn]
|
| 2062 |
+
[40Ca]
|
| 2063 |
+
[41Ca]
|
| 2064 |
+
[89Rb]
|
| 2065 |
+
[116In]
|
| 2066 |
+
[129Sb]
|
| 2067 |
+
[91Sr]
|
| 2068 |
+
[71Ge]
|
| 2069 |
+
[139Ba]
|
| 2070 |
+
[69Ga]
|
| 2071 |
+
[120Sb]
|
| 2072 |
+
[121Sn]
|
| 2073 |
+
[123Sn]
|
| 2074 |
+
[131Te]
|
| 2075 |
+
[77Ge]
|
| 2076 |
+
[135Ba]
|
| 2077 |
+
[82Sr]
|
| 2078 |
+
[43K]
|
| 2079 |
+
[131Ba]
|
| 2080 |
+
[92Sr]
|
| 2081 |
+
[88Rb]
|
| 2082 |
+
[129Cs]
|
| 2083 |
+
[144Cs]
|
| 2084 |
+
[127Cs]
|
| 2085 |
+
[200Tl]
|
| 2086 |
+
[202Tl]
|
| 2087 |
+
[141Ba]
|
| 2088 |
+
[117Sb]
|
| 2089 |
+
[116Sb]
|
| 2090 |
+
[78As]
|
| 2091 |
+
[131Sb]
|
| 2092 |
+
[126Sb]
|
| 2093 |
+
[128Sb]
|
| 2094 |
+
[130Sb]
|
| 2095 |
+
[67Ge]
|
| 2096 |
+
[68Ge]
|
| 2097 |
+
[78Ge]
|
| 2098 |
+
[66Ge]
|
| 2099 |
+
[223Fr]
|
| 2100 |
+
[132Cs]
|
| 2101 |
+
[125Cs]
|
| 2102 |
+
[138Cs]
|
| 2103 |
+
[133Te]
|
| 2104 |
+
[84Rb]
|
| 2105 |
+
[83Rb]
|
| 2106 |
+
[81Rb]
|
| 2107 |
+
[142Ba]
|
| 2108 |
+
[200Bi]
|
| 2109 |
+
[115Sb]
|
| 2110 |
+
[194Tl]
|
| 2111 |
+
[70Se]
|
| 2112 |
+
[112In]
|
| 2113 |
+
[118Sb]
|
| 2114 |
+
[70Ga]
|
| 2115 |
+
[27Mg]
|
| 2116 |
+
[202Bi]
|
| 2117 |
+
[83Se]
|
| 2118 |
+
[9Li]
|
| 2119 |
+
[69As]
|
| 2120 |
+
[79Rb]
|
| 2121 |
+
[81Sr]
|
| 2122 |
+
[83Sr]
|
| 2123 |
+
[78Se]
|
| 2124 |
+
[109In]
|
| 2125 |
+
[29Al]
|
| 2126 |
+
[118Sn]
|
| 2127 |
+
[117In]
|
| 2128 |
+
[119Sb]
|
| 2129 |
+
[114Sn]
|
| 2130 |
+
[138Ba]
|
| 2131 |
+
[69Ge]
|
| 2132 |
+
[73Ga]
|
| 2133 |
+
[74Ge]
|
| 2134 |
+
[206Tl]
|
| 2135 |
+
[199Tl]
|
| 2136 |
+
[130Cs]
|
| 2137 |
+
[28Mg]
|
| 2138 |
+
[116Te]
|
| 2139 |
+
[112Sn]
|
| 2140 |
+
[126Ba]
|
| 2141 |
+
[211Bi]
|
| 2142 |
+
[81Se]
|
| 2143 |
+
[127Sn]
|
| 2144 |
+
[143Cs]
|
| 2145 |
+
[134Te]
|
| 2146 |
+
[80Sr]
|
| 2147 |
+
[45K]
|
| 2148 |
+
[215Po]
|
| 2149 |
+
[207Po]
|
| 2150 |
+
[111Sn]
|
| 2151 |
+
[211Po]
|
| 2152 |
+
[128Ba]
|
| 2153 |
+
[198Tl]
|
| 2154 |
+
[227Ra]
|
| 2155 |
+
[213Po]
|
| 2156 |
+
[220Ra]
|
| 2157 |
+
[128Sn]
|
| 2158 |
+
[203Po]
|
| 2159 |
+
[205Po]
|
| 2160 |
+
[65Ga]
|
| 2161 |
+
[197Tl]
|
| 2162 |
+
[88Sr]
|
| 2163 |
+
[110In]
|
| 2164 |
+
[31Si]
|
| 2165 |
+
[201Bi]
|
| 2166 |
+
[121Te]
|
| 2167 |
+
[205Bi]
|
| 2168 |
+
[203Bi]
|
| 2169 |
+
[195Tl]
|
| 2170 |
+
[209Tl]
|
| 2171 |
+
[110Sn]
|
| 2172 |
+
[222Fr]
|
| 2173 |
+
[207At]
|
| 2174 |
+
[119In]
|
| 2175 |
+
[As@]
|
| 2176 |
+
[129IH]
|
| 2177 |
+
[157Dy]
|
| 2178 |
+
[111IH]
|
| 2179 |
+
[230Ra]
|
| 2180 |
+
[144Pr+3]
|
| 2181 |
+
[SiH3+]
|
| 2182 |
+
[3He]
|
| 2183 |
+
[AsH5]
|
| 2184 |
+
[72Se]
|
| 2185 |
+
[95Tc]
|
| 2186 |
+
[103Pd]
|
| 2187 |
+
[121Sn+2]
|
| 2188 |
+
[211Rn]
|
| 2189 |
+
[38SH2]
|
| 2190 |
+
[127IH]
|
| 2191 |
+
[74Br-]
|
| 2192 |
+
[133I-]
|
| 2193 |
+
[100Tc+4]
|
| 2194 |
+
[100Tc]
|
| 2195 |
+
[36Cl-]
|
| 2196 |
+
[89Y+3]
|
| 2197 |
+
[104Rh]
|
| 2198 |
+
[152Sm]
|
| 2199 |
+
[226Ra]
|
| 2200 |
+
[19FH]
|
| 2201 |
+
[104Pd]
|
| 2202 |
+
[148Gd]
|
| 2203 |
+
[157Lu]
|
| 2204 |
+
[33SH2]
|
| 2205 |
+
[121I-]
|
| 2206 |
+
[17FH]
|
| 2207 |
+
[71Se]
|
| 2208 |
+
[157Sm]
|
| 2209 |
+
[148Tb]
|
| 2210 |
+
[164Dy]
|
| 2211 |
+
[15OH2]
|
| 2212 |
+
[15O+]
|
| 2213 |
+
[39K]
|
| 2214 |
+
[40Ar]
|
| 2215 |
+
[50Cr+3]
|
| 2216 |
+
[50Cr]
|
| 2217 |
+
[52Ti]
|
| 2218 |
+
[103Pd+2]
|
| 2219 |
+
[130Ba]
|
| 2220 |
+
[142Pm]
|
| 2221 |
+
[153Gd+3]
|
| 2222 |
+
[151Eu]
|
| 2223 |
+
[103Rh]
|
| 2224 |
+
[124Xe]
|
| 2225 |
+
[152Tb]
|
| 2226 |
+
[17OH2]
|
| 2227 |
+
[20Ne]
|
| 2228 |
+
[52Fe]
|
| 2229 |
+
[94Zr+4]
|
| 2230 |
+
[94Zr]
|
| 2231 |
+
[149Pr]
|
| 2232 |
+
[16OH2]
|
| 2233 |
+
[53Cr+6]
|
| 2234 |
+
[53Cr]
|
| 2235 |
+
[81Br-]
|
| 2236 |
+
[112Pd]
|
| 2237 |
+
[125Xe]
|
| 2238 |
+
[155Gd]
|
| 2239 |
+
[157Gd]
|
| 2240 |
+
[168Yb]
|
| 2241 |
+
[184Os]
|
| 2242 |
+
[166Tb]
|
| 2243 |
+
[221Fr]
|
| 2244 |
+
[212Ra]
|
| 2245 |
+
[75Br-]
|
| 2246 |
+
[79Br-]
|
| 2247 |
+
[113Ag]
|
| 2248 |
+
[23Na]
|
| 2249 |
+
[34Cl-]
|
| 2250 |
+
[34ClH]
|
| 2251 |
+
[38Cl-]
|
| 2252 |
+
[56Fe]
|
| 2253 |
+
[68Cu]
|
| 2254 |
+
[77Br-]
|
| 2255 |
+
[90Zr+4]
|
| 2256 |
+
[90Zr]
|
| 2257 |
+
[102Pd]
|
| 2258 |
+
[154Eu+3]
|
| 2259 |
+
[57Mn]
|
| 2260 |
+
[165Tm]
|
| 2261 |
+
[152Dy]
|
| 2262 |
+
[217At]
|
| 2263 |
+
[77se]
|
| 2264 |
+
[13cH-]
|
| 2265 |
+
[122Te]
|
| 2266 |
+
[156Gd]
|
| 2267 |
+
[124Te]
|
| 2268 |
+
[53Ni]
|
| 2269 |
+
[131Xe]
|
| 2270 |
+
[174Hf+4]
|
| 2271 |
+
[174Hf]
|
| 2272 |
+
[76Se]
|
| 2273 |
+
[168Tm]
|
| 2274 |
+
[167Dy]
|
| 2275 |
+
[154Gd]
|
| 2276 |
+
[95Ru]
|
| 2277 |
+
[210At]
|
| 2278 |
+
[85Br]
|
| 2279 |
+
[59Co]
|
| 2280 |
+
[122Xe]
|
| 2281 |
+
[27Al]
|
| 2282 |
+
[54Cr]
|
| 2283 |
+
[198Hg]
|
| 2284 |
+
[85Rb+]
|
| 2285 |
+
[214Tl]
|
| 2286 |
+
[229Rn]
|
| 2287 |
+
[218Pb]
|
| 2288 |
+
[218Bi]
|
| 2289 |
+
[167Tm+3]
|
| 2290 |
+
[18o+]
|
| 2291 |
+
[P@@H+]
|
| 2292 |
+
[P@H+]
|
| 2293 |
+
[13N+]
|
| 2294 |
+
[212Pb+2]
|
| 2295 |
+
[217Bi]
|
| 2296 |
+
[249Cf+2]
|
| 2297 |
+
[18OH3+]
|
| 2298 |
+
[90Sr-]
|
| 2299 |
+
[Cf+3]
|
| 2300 |
+
[200Hg]
|
| 2301 |
+
[86Tc]
|
| 2302 |
+
[141Pr+3]
|
| 2303 |
+
[141Pr]
|
| 2304 |
+
[16nH]
|
| 2305 |
+
[14NH4+]
|
| 2306 |
+
[132Xe]
|
| 2307 |
+
[83Kr]
|
| 2308 |
+
[70Zn+2]
|
| 2309 |
+
[137Ba+2]
|
| 2310 |
+
[36Ar]
|
| 2311 |
+
[38Ar]
|
| 2312 |
+
[21Ne]
|
| 2313 |
+
[126Xe]
|
| 2314 |
+
[136Xe]
|
| 2315 |
+
[128Xe]
|
| 2316 |
+
[134Xe]
|
| 2317 |
+
[84Kr]
|
| 2318 |
+
[86Kr]
|
| 2319 |
+
[78Kr]
|
| 2320 |
+
[80Kr]
|
| 2321 |
+
[82Kr]
|
| 2322 |
+
[67Zn+2]
|
| 2323 |
+
[65Cu+2]
|
| 2324 |
+
[110Te]
|
| 2325 |
+
[58Fe+3]
|
| 2326 |
+
[142Nd]
|
| 2327 |
+
[38K]
|
| 2328 |
+
[198Au+3]
|
| 2329 |
+
[122IH]
|
| 2330 |
+
[38PH3]
|
| 2331 |
+
[130I-]
|
| 2332 |
+
[40K+]
|
| 2333 |
+
[38K+]
|
| 2334 |
+
[28Mg+2]
|
| 2335 |
+
[208Tl+]
|
| 2336 |
+
[13OH2]
|
| 2337 |
+
[198Bi]
|
| 2338 |
+
[192Bi]
|
| 2339 |
+
[194Bi]
|
| 2340 |
+
[196Bi]
|
| 2341 |
+
[132I-]
|
| 2342 |
+
[83Sr+2]
|
| 2343 |
+
[169Er+3]
|
| 2344 |
+
[122I-]
|
| 2345 |
+
[120I-]
|
| 2346 |
+
[92Sr+2]
|
| 2347 |
+
[126I-]
|
| 2348 |
+
[24Mg]
|
| 2349 |
+
[84Sr]
|
| 2350 |
+
[118Pd+2]
|
| 2351 |
+
[118Pd]
|
| 2352 |
+
[AsH4]
|
| 2353 |
+
[127I-]
|
| 2354 |
+
[9C-]
|
| 2355 |
+
[11CH3+]
|
| 2356 |
+
[17B]
|
| 2357 |
+
[7B]
|
| 2358 |
+
[4HH]
|
| 2359 |
+
[18C-]
|
| 2360 |
+
[22CH3-]
|
| 2361 |
+
[22CH4]
|
| 2362 |
+
[17C-]
|
| 2363 |
+
[15CH3]
|
| 2364 |
+
[16CH3]
|
| 2365 |
+
[11NH3]
|
| 2366 |
+
[21NH3]
|
| 2367 |
+
[11N-]
|
| 2368 |
+
[11NH]
|
| 2369 |
+
[16CH]
|
| 2370 |
+
[17CH2]
|
| 2371 |
+
[99Ru+2]
|
| 2372 |
+
[181Ta+2]
|
| 2373 |
+
[181Ta]
|
| 2374 |
+
[20CH]
|
| 2375 |
+
[32PH2]
|
| 2376 |
+
[55Fe+2]
|
| 2377 |
+
[SH3]
|
| 2378 |
+
[S@H]
|
| 2379 |
+
[Mn-]
|
| 2380 |
+
[IH4]
|
| 2381 |
+
[ThH]
|
| 2382 |
+
[GaH-]
|
| 2383 |
+
[BiH+]
|
| 2384 |
+
[EuH2]
|
| 2385 |
+
[FeH4-3]
|
| 2386 |
+
[FeH6]
|
| 2387 |
+
[IH5]
|
| 2388 |
+
[NiH+]
|
| 2389 |
+
[SrH2]
|
| 2390 |
+
[VH4]
|
| 2391 |
+
[YH3]
|
| 2392 |
+
[seH+]
|
| 2393 |
+
<unk>
|
models/smi_ssed/load.py
ADDED
|
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
|
| 2 |
+
# Deep learning
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torch.backends.cudnn as cudnn
|
| 7 |
+
|
| 8 |
+
# Tokenizer
|
| 9 |
+
from transformers import BertTokenizer
|
| 10 |
+
|
| 11 |
+
# Mamba
|
| 12 |
+
from mamba_ssm.models.mixer_seq_simple import MixerModel
|
| 13 |
+
|
| 14 |
+
# Data
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
# Chemistry
|
| 19 |
+
from rdkit import Chem
|
| 20 |
+
from rdkit.Chem import PandasTools
|
| 21 |
+
from rdkit.Chem import Descriptors
|
| 22 |
+
PandasTools.RenderImagesInAllDataFrames(True)
|
| 23 |
+
|
| 24 |
+
# Standard library
|
| 25 |
+
import regex as re
|
| 26 |
+
import random
|
| 27 |
+
import os
|
| 28 |
+
import gc
|
| 29 |
+
from tqdm import tqdm
|
| 30 |
+
from huggingface_hub import hf_hub_download
|
| 31 |
+
tqdm.pandas()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# function to canonicalize SMILES
|
| 35 |
+
def normalize_smiles(smi, canonical=True, isomeric=False):
|
| 36 |
+
try:
|
| 37 |
+
normalized = Chem.MolToSmiles(
|
| 38 |
+
Chem.MolFromSmiles(smi), canonical=canonical, isomericSmiles=isomeric
|
| 39 |
+
)
|
| 40 |
+
except:
|
| 41 |
+
normalized = None
|
| 42 |
+
return normalized
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class MolTranBertTokenizer(BertTokenizer):
|
| 46 |
+
def __init__(self, vocab_file: str = '',
|
| 47 |
+
do_lower_case=False,
|
| 48 |
+
unk_token='<pad>',
|
| 49 |
+
sep_token='<eos>',
|
| 50 |
+
pad_token='<pad>',
|
| 51 |
+
cls_token='<bos>',
|
| 52 |
+
mask_token='<mask>',
|
| 53 |
+
**kwargs):
|
| 54 |
+
super().__init__(vocab_file,
|
| 55 |
+
unk_token=unk_token,
|
| 56 |
+
sep_token=sep_token,
|
| 57 |
+
pad_token=pad_token,
|
| 58 |
+
cls_token=cls_token,
|
| 59 |
+
mask_token=mask_token,
|
| 60 |
+
**kwargs)
|
| 61 |
+
|
| 62 |
+
self.regex_tokenizer = re.compile(PATTERN)
|
| 63 |
+
self.wordpiece_tokenizer = None
|
| 64 |
+
self.basic_tokenizer = None
|
| 65 |
+
with open(vocab_file) as f:
|
| 66 |
+
self.padding_idx = f.readlines().index(pad_token+'\n')
|
| 67 |
+
|
| 68 |
+
def _tokenize(self, text):
|
| 69 |
+
split_tokens = self.regex_tokenizer.findall(text)
|
| 70 |
+
return split_tokens
|
| 71 |
+
|
| 72 |
+
def convert_idx_to_tokens(self, idx_tensor):
|
| 73 |
+
tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()]
|
| 74 |
+
return tokens
|
| 75 |
+
|
| 76 |
+
def convert_tokens_to_string(self, tokens):
|
| 77 |
+
stopwords = ['<bos>', '<eos>']
|
| 78 |
+
clean_tokens = [word for word in tokens if word not in stopwords]
|
| 79 |
+
out_string = ''.join(clean_tokens)
|
| 80 |
+
return out_string
|
| 81 |
+
|
| 82 |
+
def get_padding_idx(self):
|
| 83 |
+
return self.padding_idx
|
| 84 |
+
|
| 85 |
+
def idx_to_smiles(self, torch_model, idx):
|
| 86 |
+
'''Convert tokens idx back to SMILES text'''
|
| 87 |
+
rev_tokens = torch_model.tokenizer.convert_idx_to_tokens(idx)
|
| 88 |
+
flat_list_tokens = [item for sublist in rev_tokens for item in sublist]
|
| 89 |
+
decoded_smiles = torch_model.tokenizer.convert_tokens_to_string(flat_list_tokens)
|
| 90 |
+
return decoded_smiles
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class AutoEncoderLayer(nn.Module):
|
| 94 |
+
|
| 95 |
+
def __init__(self, feature_size, latent_size):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.encoder = self.Encoder(feature_size, latent_size)
|
| 98 |
+
self.decoder = self.Decoder(feature_size, latent_size)
|
| 99 |
+
|
| 100 |
+
class Encoder(nn.Module):
|
| 101 |
+
|
| 102 |
+
def __init__(self, feature_size, latent_size):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.is_cuda_available = torch.cuda.is_available()
|
| 105 |
+
self.fc1 = nn.Linear(feature_size, latent_size)
|
| 106 |
+
self.ln_f = nn.LayerNorm(latent_size)
|
| 107 |
+
self.lat = nn.Linear(latent_size, latent_size, bias=False)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
if self.is_cuda_available:
|
| 111 |
+
self.fc1.cuda()
|
| 112 |
+
self.ln_f.cuda()
|
| 113 |
+
self.lat.cuda()
|
| 114 |
+
x = x.cuda()
|
| 115 |
+
x = F.gelu(self.fc1(x))
|
| 116 |
+
x = self.ln_f(x)
|
| 117 |
+
x = self.lat(x)
|
| 118 |
+
return x # -> (N, D)
|
| 119 |
+
|
| 120 |
+
class Decoder(nn.Module):
|
| 121 |
+
|
| 122 |
+
def __init__(self, feature_size, latent_size):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.is_cuda_available = torch.cuda.is_available()
|
| 125 |
+
self.fc1 = nn.Linear(latent_size, latent_size)
|
| 126 |
+
self.ln_f = nn.LayerNorm(latent_size)
|
| 127 |
+
self.rec = nn.Linear(latent_size, feature_size, bias=False)
|
| 128 |
+
|
| 129 |
+
def forward(self, x):
|
| 130 |
+
if self.is_cuda_available:
|
| 131 |
+
self.fc1.cuda()
|
| 132 |
+
self.ln_f.cuda()
|
| 133 |
+
self.rec.cuda()
|
| 134 |
+
x = x.cuda()
|
| 135 |
+
x = F.gelu(self.fc1(x))
|
| 136 |
+
x = self.ln_f(x)
|
| 137 |
+
x = self.rec(x)
|
| 138 |
+
return x # -> (N, L*D)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class LangLayer(nn.Module):
|
| 142 |
+
def __init__(self, n_embd, n_vocab):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.is_cuda_available = torch.cuda.is_available()
|
| 145 |
+
self.embed = nn.Linear(n_embd, n_embd)
|
| 146 |
+
self.ln_f = nn.LayerNorm(n_embd)
|
| 147 |
+
self.head = nn.Linear(n_embd, n_vocab, bias=False)
|
| 148 |
+
def forward(self, tensor):
|
| 149 |
+
if self.is_cuda_available:
|
| 150 |
+
self.embed.cuda()
|
| 151 |
+
self.ln_f.cuda()
|
| 152 |
+
self.head.cuda()
|
| 153 |
+
tensor = tensor.cuda()
|
| 154 |
+
tensor = self.embed(tensor)
|
| 155 |
+
tensor = F.gelu(tensor)
|
| 156 |
+
tensor = self.ln_f(tensor)
|
| 157 |
+
tensor = self.head(tensor)
|
| 158 |
+
return tensor
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class Net(nn.Module):
|
| 162 |
+
|
| 163 |
+
def __init__(self, smiles_embed_dim, n_output=1, dropout=0.2):
|
| 164 |
+
super().__init__()
|
| 165 |
+
self.desc_skip_connection = True
|
| 166 |
+
self.fc1 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
|
| 167 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 168 |
+
self.relu1 = nn.GELU()
|
| 169 |
+
self.fc2 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
|
| 170 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 171 |
+
self.relu2 = nn.GELU()
|
| 172 |
+
self.final = nn.Linear(smiles_embed_dim, n_output)
|
| 173 |
+
|
| 174 |
+
def forward(self, smiles_emb, multitask=False):
|
| 175 |
+
x_out = self.fc1(smiles_emb)
|
| 176 |
+
x_out = self.dropout1(x_out)
|
| 177 |
+
x_out = self.relu1(x_out)
|
| 178 |
+
|
| 179 |
+
if self.desc_skip_connection is True:
|
| 180 |
+
x_out = x_out + smiles_emb
|
| 181 |
+
|
| 182 |
+
z = self.fc2(x_out)
|
| 183 |
+
z = self.dropout2(z)
|
| 184 |
+
z = self.relu2(z)
|
| 185 |
+
if self.desc_skip_connection is True:
|
| 186 |
+
z = self.final(z + x_out)
|
| 187 |
+
else:
|
| 188 |
+
z = self.final(z)
|
| 189 |
+
|
| 190 |
+
if multitask:
|
| 191 |
+
return F.sigmoid(z)
|
| 192 |
+
return z
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class MolEncoder(nn.Module):
|
| 196 |
+
|
| 197 |
+
def __init__(self, config, n_vocab):
|
| 198 |
+
super().__init__()
|
| 199 |
+
|
| 200 |
+
self.config = config
|
| 201 |
+
self.mamba = MixerModel(
|
| 202 |
+
d_model=config['n_embd'],
|
| 203 |
+
n_layer=config['n_layer'],
|
| 204 |
+
ssm_cfg=dict(
|
| 205 |
+
d_state=config['d_state'],
|
| 206 |
+
d_conv=config['d_conv'],
|
| 207 |
+
expand=config['expand_factor'],
|
| 208 |
+
dt_rank=config['dt_rank'],
|
| 209 |
+
dt_min=config['dt_min'],
|
| 210 |
+
dt_max=config['dt_max'],
|
| 211 |
+
dt_init=config['dt_init'],
|
| 212 |
+
dt_scale=config['dt_scale'],
|
| 213 |
+
dt_init_floor=config['dt_init_floor'],
|
| 214 |
+
conv_bias=bool(config['conv_bias']),
|
| 215 |
+
bias=bool(config['bias']),
|
| 216 |
+
),
|
| 217 |
+
vocab_size=n_vocab,
|
| 218 |
+
rms_norm=False,
|
| 219 |
+
fused_add_norm=False,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# classification
|
| 223 |
+
self.lang_model = LangLayer(config['n_embd'], n_vocab)
|
| 224 |
+
|
| 225 |
+
def forward(self, idx, mask):
|
| 226 |
+
x = self.mamba(idx)
|
| 227 |
+
|
| 228 |
+
# add padding
|
| 229 |
+
token_embeddings = x
|
| 230 |
+
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 231 |
+
mask_embeddings = (token_embeddings * input_mask_expanded)
|
| 232 |
+
token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.config['max_len'] - mask_embeddings.shape[1]), value=0)
|
| 233 |
+
|
| 234 |
+
return token_embeddings
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class MoLDecoder(nn.Module):
|
| 238 |
+
|
| 239 |
+
def __init__(self, n_vocab, max_len, n_embd, n_gpu=None):
|
| 240 |
+
super(MoLDecoder, self).__init__()
|
| 241 |
+
|
| 242 |
+
self.max_len = max_len
|
| 243 |
+
self.n_embd = n_embd
|
| 244 |
+
self.n_gpu = n_gpu
|
| 245 |
+
self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd)
|
| 246 |
+
self.lm_head = LangLayer(n_embd, n_vocab)
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class Smi_ssed(nn.Module):
|
| 250 |
+
"""granite.materials.smi-ssed 336M Parameters"""
|
| 251 |
+
|
| 252 |
+
def __init__(self, tokenizer, config=None):
|
| 253 |
+
super(Smi_ssed, self).__init__()
|
| 254 |
+
|
| 255 |
+
# configuration
|
| 256 |
+
self.config = config
|
| 257 |
+
self.tokenizer = tokenizer
|
| 258 |
+
self.padding_idx = tokenizer.get_padding_idx()
|
| 259 |
+
self.n_vocab = len(self.tokenizer.vocab)
|
| 260 |
+
self.is_cuda_available = torch.cuda.is_available()
|
| 261 |
+
|
| 262 |
+
# instantiate modules
|
| 263 |
+
if self.config:
|
| 264 |
+
self.encoder = MolEncoder(self.config, self.n_vocab)
|
| 265 |
+
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
| 266 |
+
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['d_dropout'])
|
| 267 |
+
|
| 268 |
+
def load_checkpoint(self, ckpt_path):
|
| 269 |
+
# load checkpoint file
|
| 270 |
+
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
| 271 |
+
|
| 272 |
+
# load hyparameters
|
| 273 |
+
self.config = checkpoint['hparams']
|
| 274 |
+
self.max_len = self.config['max_len']
|
| 275 |
+
self.n_embd = self.config['n_embd']
|
| 276 |
+
self._set_seed(self.config['seed'])
|
| 277 |
+
|
| 278 |
+
# instantiate modules
|
| 279 |
+
self.encoder = MolEncoder(self.config, self.n_vocab)
|
| 280 |
+
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
| 281 |
+
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else 1, dropout=self.config['d_dropout'])
|
| 282 |
+
|
| 283 |
+
# load weights
|
| 284 |
+
self.load_state_dict(checkpoint['MODEL_STATE'], strict=False)
|
| 285 |
+
|
| 286 |
+
# load RNG states each time the model and states are loaded from checkpoint
|
| 287 |
+
if 'rng' in self.config:
|
| 288 |
+
rng = self.config['rng']
|
| 289 |
+
for key, value in rng.items():
|
| 290 |
+
if key =='torch_state':
|
| 291 |
+
torch.set_rng_state(value.cpu())
|
| 292 |
+
elif key =='cuda_state':
|
| 293 |
+
torch.cuda.set_rng_state(value.cpu())
|
| 294 |
+
elif key =='numpy_state':
|
| 295 |
+
np.random.set_state(value)
|
| 296 |
+
elif key =='python_state':
|
| 297 |
+
random.setstate(value)
|
| 298 |
+
else:
|
| 299 |
+
print('unrecognized state')
|
| 300 |
+
|
| 301 |
+
def _init_weights(self, module):
|
| 302 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 303 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 304 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 305 |
+
module.bias.data.zero_()
|
| 306 |
+
elif isinstance(module, nn.LayerNorm):
|
| 307 |
+
module.bias.data.zero_()
|
| 308 |
+
module.weight.data.fill_(1.0)
|
| 309 |
+
|
| 310 |
+
def _set_seed(self, value):
|
| 311 |
+
print('Random Seed:', value)
|
| 312 |
+
random.seed(value)
|
| 313 |
+
torch.manual_seed(value)
|
| 314 |
+
torch.cuda.manual_seed(value)
|
| 315 |
+
torch.cuda.manual_seed_all(value)
|
| 316 |
+
np.random.seed(value)
|
| 317 |
+
cudnn.deterministic = True
|
| 318 |
+
cudnn.benchmark = False
|
| 319 |
+
|
| 320 |
+
def forward(self, smiles, batch_size=100):
|
| 321 |
+
return self.decode(self.encode(smiles, batch_size=batch_size, return_torch=True))
|
| 322 |
+
|
| 323 |
+
def tokenize(self, smiles):
|
| 324 |
+
"""Tokenize a string into tokens."""
|
| 325 |
+
if isinstance(smiles, str):
|
| 326 |
+
batch = [smiles]
|
| 327 |
+
else:
|
| 328 |
+
batch = smiles
|
| 329 |
+
|
| 330 |
+
tokens = self.tokenizer(
|
| 331 |
+
batch,
|
| 332 |
+
padding=True,
|
| 333 |
+
truncation=True,
|
| 334 |
+
add_special_tokens=True,
|
| 335 |
+
return_tensors="pt",
|
| 336 |
+
max_length=self.max_len,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
idx = tokens['input_ids'].clone().detach()
|
| 340 |
+
mask = tokens['attention_mask'].clone().detach()
|
| 341 |
+
|
| 342 |
+
if self.is_cuda_available:
|
| 343 |
+
return idx.cuda(), mask.cuda()
|
| 344 |
+
|
| 345 |
+
return idx, mask
|
| 346 |
+
|
| 347 |
+
def extract_all(self, smiles):
|
| 348 |
+
"""Extract all elements from each part of smi-ssed. Be careful."""
|
| 349 |
+
# evaluation mode
|
| 350 |
+
self.encoder.eval()
|
| 351 |
+
self.decoder.eval()
|
| 352 |
+
if self.is_cuda_available:
|
| 353 |
+
self.encoder.cuda()
|
| 354 |
+
self.decoder.cuda()
|
| 355 |
+
|
| 356 |
+
# handle single str or a list of str
|
| 357 |
+
smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles))
|
| 358 |
+
|
| 359 |
+
# SMILES normalization
|
| 360 |
+
smiles = smiles.apply(normalize_smiles)
|
| 361 |
+
null_idx = smiles[smiles.isnull()].index.to_list() # keep track of SMILES that cannot normalize
|
| 362 |
+
smiles = smiles.dropna()
|
| 363 |
+
|
| 364 |
+
# tokenizer
|
| 365 |
+
idx, mask = self.tokenize(smiles)
|
| 366 |
+
|
| 367 |
+
###########
|
| 368 |
+
# Encoder #
|
| 369 |
+
###########
|
| 370 |
+
# encoder forward
|
| 371 |
+
x = self.encoder.mamba(idx)
|
| 372 |
+
|
| 373 |
+
# mean pooling
|
| 374 |
+
token_embeddings = x
|
| 375 |
+
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 376 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
| 377 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 378 |
+
true_set = sum_embeddings / sum_mask # DO NOT USE THIS FOR DOWNSTREAM TASKS, USE `pred_set` INSTEAD
|
| 379 |
+
|
| 380 |
+
# add padding
|
| 381 |
+
mask_embeddings = (token_embeddings * input_mask_expanded)
|
| 382 |
+
token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.max_len - mask_embeddings.shape[1]), value=0)
|
| 383 |
+
idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=2)
|
| 384 |
+
|
| 385 |
+
true_ids = idx
|
| 386 |
+
true_cte = token_embeddings
|
| 387 |
+
true_cte = true_cte.view(-1, self.max_len*self.n_embd)
|
| 388 |
+
|
| 389 |
+
###########
|
| 390 |
+
# Decoder #
|
| 391 |
+
###########
|
| 392 |
+
# CTE autoencoder
|
| 393 |
+
pred_set = self.decoder.autoencoder.encoder(true_cte)
|
| 394 |
+
pred_cte = self.decoder.autoencoder.decoder(pred_set)
|
| 395 |
+
|
| 396 |
+
# reconstruct tokens
|
| 397 |
+
pred_ids = self.decoder.lm_head(pred_cte.view(-1, self.max_len, self.n_embd))
|
| 398 |
+
pred_ids = torch.argmax(pred_ids, axis=-1)
|
| 399 |
+
|
| 400 |
+
# replacing null SMILES with NaN values
|
| 401 |
+
for idx in null_idx:
|
| 402 |
+
true_ids = true_ids.tolist()
|
| 403 |
+
pred_ids = pred_ids.tolist()
|
| 404 |
+
true_cte = true_cte.tolist()
|
| 405 |
+
pred_cte = pred_cte.tolist()
|
| 406 |
+
true_set = true_set.tolist()
|
| 407 |
+
pred_set = pred_set.tolist()
|
| 408 |
+
|
| 409 |
+
true_ids.insert(idx, np.array([np.nan]*self.config['max_len']))
|
| 410 |
+
pred_ids.insert(idx, np.array([np.nan]*self.config['max_len']))
|
| 411 |
+
true_cte.insert(idx, np.array([np.nan] * (self.config['max_len']*self.config['n_embd'])))
|
| 412 |
+
pred_cte.insert(idx, np.array([np.nan] * (self.config['max_len']*self.config['n_embd'])))
|
| 413 |
+
true_set.insert(idx, np.array([np.nan]*self.config['n_embd']))
|
| 414 |
+
pred_set.insert(idx, np.array([np.nan]*self.config['n_embd']))
|
| 415 |
+
|
| 416 |
+
if len(null_idx) > 0:
|
| 417 |
+
true_ids = torch.tensor(true_ids)
|
| 418 |
+
pred_ids = torch.tensor(pred_ids)
|
| 419 |
+
true_cte = torch.tensor(true_cte)
|
| 420 |
+
pred_cte = torch.tensor(pred_cte)
|
| 421 |
+
true_set = torch.tensor(true_set)
|
| 422 |
+
pred_set = torch.tensor(pred_set)
|
| 423 |
+
|
| 424 |
+
return ((true_ids, pred_ids), # tokens
|
| 425 |
+
(true_cte, pred_cte), # token embeddings
|
| 426 |
+
(true_set, pred_set)) # smiles embeddings
|
| 427 |
+
|
| 428 |
+
def extract_embeddings(self, smiles):
|
| 429 |
+
"""Extract token and SMILES embeddings."""
|
| 430 |
+
# evaluation mode
|
| 431 |
+
self.encoder.eval()
|
| 432 |
+
if self.is_cuda_available:
|
| 433 |
+
self.encoder.cuda()
|
| 434 |
+
|
| 435 |
+
# tokenizer
|
| 436 |
+
idx, mask = self.tokenize(smiles)
|
| 437 |
+
|
| 438 |
+
# encoder forward
|
| 439 |
+
token_embeddings = self.encoder(idx, mask)
|
| 440 |
+
|
| 441 |
+
# aggregate token embeddings (similar to mean pooling)
|
| 442 |
+
# CAUTION: use the embeddings from the autoencoder.
|
| 443 |
+
smiles_embeddings = self.decoder.autoencoder.encoder(token_embeddings.view(-1, self.max_len*self.n_embd))
|
| 444 |
+
|
| 445 |
+
# add padding
|
| 446 |
+
idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=self.padding_idx)
|
| 447 |
+
|
| 448 |
+
return idx, token_embeddings, smiles_embeddings
|
| 449 |
+
|
| 450 |
+
def encode(self, smiles, useCuda=False, batch_size=100, return_torch=False):
|
| 451 |
+
"""Extract efficiently SMILES embeddings per batches."""
|
| 452 |
+
# TODO: remove useCuda argument
|
| 453 |
+
|
| 454 |
+
# handle single str or a list of str
|
| 455 |
+
smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles))
|
| 456 |
+
|
| 457 |
+
# SMILES normalization
|
| 458 |
+
smiles = smiles.apply(normalize_smiles)
|
| 459 |
+
null_idx = smiles[smiles.isnull()].index.to_list() # keep track of SMILES that cannot normalize
|
| 460 |
+
smiles = smiles.dropna()
|
| 461 |
+
|
| 462 |
+
# process in batches
|
| 463 |
+
n_split = smiles.shape[0] // batch_size if smiles.shape[0] >= batch_size else smiles.shape[0]
|
| 464 |
+
embeddings = [
|
| 465 |
+
self.extract_embeddings(list(batch))[2].cpu().detach().numpy()
|
| 466 |
+
for batch in tqdm(np.array_split(smiles, n_split))
|
| 467 |
+
]
|
| 468 |
+
flat_list = [item for sublist in embeddings for item in sublist]
|
| 469 |
+
|
| 470 |
+
# clear GPU memory
|
| 471 |
+
if self.is_cuda_available:
|
| 472 |
+
torch.cuda.empty_cache()
|
| 473 |
+
gc.collect()
|
| 474 |
+
|
| 475 |
+
# replacing null SMILES with NaN values
|
| 476 |
+
for idx in null_idx:
|
| 477 |
+
flat_list.insert(idx, np.array([np.nan]*self.config['n_embd']))
|
| 478 |
+
flat_list = np.asarray(flat_list)
|
| 479 |
+
|
| 480 |
+
if return_torch:
|
| 481 |
+
return torch.tensor(flat_list)
|
| 482 |
+
return pd.DataFrame(flat_list)
|
| 483 |
+
|
| 484 |
+
def embd_to_smiles(self, embds):
|
| 485 |
+
# evaluation mode
|
| 486 |
+
self.decoder.eval()
|
| 487 |
+
if self.is_cuda_available:
|
| 488 |
+
self.decoder.cuda()
|
| 489 |
+
|
| 490 |
+
# reconstruct token embeddings
|
| 491 |
+
pred_token_embds = self.decoder.autoencoder.decoder(embds)
|
| 492 |
+
|
| 493 |
+
# reconstruct tokens
|
| 494 |
+
pred_idx = self.decoder.lm_head(pred_token_embds.view(-1, self.max_len, self.n_embd))
|
| 495 |
+
pred_idx = torch.argmax(pred_idx, axis=-1).cpu().detach().numpy()
|
| 496 |
+
|
| 497 |
+
# convert idx to tokens
|
| 498 |
+
pred_smiles = []
|
| 499 |
+
for i in range(pred_idx.shape[0]):
|
| 500 |
+
idx = pred_idx[i]
|
| 501 |
+
smiles = self.tokenizer.idx_to_smiles(self, idx)
|
| 502 |
+
smiles = smiles.replace('<bos>', '') # begin token
|
| 503 |
+
smiles = smiles.replace('<eos>', '') # end token
|
| 504 |
+
smiles = smiles.replace('<pad>', '') # pad token
|
| 505 |
+
pred_smiles.append(smiles)
|
| 506 |
+
return pred_smiles
|
| 507 |
+
|
| 508 |
+
def decode(self, smiles_embeddings, batch_size=100):
|
| 509 |
+
"""Decode SMILES embeddings back to SMILES."""
|
| 510 |
+
# process in batches
|
| 511 |
+
n_split = smiles_embeddings.shape[0] // batch_size if smiles_embeddings.shape[0] >= batch_size else smiles_embeddings.shape[0]
|
| 512 |
+
embeddings = [
|
| 513 |
+
self.embd_to_smiles(batch) for batch in tqdm(np.array_split(smiles_embeddings, n_split))
|
| 514 |
+
]
|
| 515 |
+
pred_smiles = [item for sublist in embeddings for item in sublist]
|
| 516 |
+
|
| 517 |
+
# clear GPU memory
|
| 518 |
+
if self.is_cuda_available:
|
| 519 |
+
torch.cuda.empty_cache()
|
| 520 |
+
gc.collect()
|
| 521 |
+
|
| 522 |
+
return pred_smiles
|
| 523 |
+
|
| 524 |
+
def __str__(self):
|
| 525 |
+
return 'smi-ssed'
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_smi_ssed(folder="./smi_ssed",
|
| 529 |
+
ckpt_filename="smi-ssed_130.pt",
|
| 530 |
+
vocab_filename="bert_vocab_curated.txt"
|
| 531 |
+
):
|
| 532 |
+
repo_id = "ibm/materials.smi_ssed"
|
| 533 |
+
filename = "bert_vocab_curated.txt"
|
| 534 |
+
vocab_filename = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 535 |
+
tokenizer = MolTranBertTokenizer(vocab_filename)
|
| 536 |
+
model = Smi_ssed(tokenizer)
|
| 537 |
+
|
| 538 |
+
filename = "smi_ssed_130.pt"
|
| 539 |
+
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 540 |
+
model.load_checkpoint(file_path)
|
| 541 |
+
model.eval()
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
#tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
| 545 |
+
#model = Smi_ssed(tokenizer)
|
| 546 |
+
#model.load_checkpoint(os.path.join(folder, ckpt_filename))
|
| 547 |
+
#model.eval()
|
| 548 |
+
print('Vocab size:', len(tokenizer.vocab))
|
| 549 |
+
print(f'[INFERENCE MODE - {str(model)}]')
|
| 550 |
+
return model
|
models/smi_ted/smi_ted_light/load.py
CHANGED
|
@@ -665,10 +665,12 @@ def load_smi_ted(folder="./smi_ted_light",
|
|
| 665 |
ckpt_filename="smi-ted-Light_40.pt",
|
| 666 |
vocab_filename="bert_vocab_curated.txt"
|
| 667 |
):
|
| 668 |
-
|
|
|
|
|
|
|
|
|
|
| 669 |
model = Smi_ted(tokenizer)
|
| 670 |
|
| 671 |
-
repo_id = "ibm/materials.smi-ted"
|
| 672 |
filename = "smi-ted-Light_40.pt"
|
| 673 |
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 674 |
model.load_checkpoint(file_path)
|
|
|
|
| 665 |
ckpt_filename="smi-ted-Light_40.pt",
|
| 666 |
vocab_filename="bert_vocab_curated.txt"
|
| 667 |
):
|
| 668 |
+
repo_id = "ibm/materials.smi-ted"
|
| 669 |
+
filename = "bert_vocab_curated.txt"
|
| 670 |
+
vocab_filename = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 671 |
+
tokenizer = MolTranBertTokenizer(vocab_filename)
|
| 672 |
model = Smi_ted(tokenizer)
|
| 673 |
|
|
|
|
| 674 |
filename = "smi-ted-Light_40.pt"
|
| 675 |
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 676 |
model.load_checkpoint(file_path)
|
requirements.txt
CHANGED
|
@@ -26,3 +26,4 @@ torch-optimizer
|
|
| 26 |
tqdm>=4.66.4
|
| 27 |
pandas==2.2.3
|
| 28 |
mordred
|
|
|
|
|
|
| 26 |
tqdm>=4.66.4
|
| 27 |
pandas==2.2.3
|
| 28 |
mordred
|
| 29 |
+
mamba_ssm==1.1.3.post1
|