+codebleu
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- CodeBLEU/__init__.py +1 -0
- CodeBLEU/bleu.py +590 -0
- CodeBLEU/dataflow_match.py +143 -0
- CodeBLEU/keywords/c_sharp.txt +107 -0
- CodeBLEU/keywords/java.txt +50 -0
- CodeBLEU/keywords/python.txt +35 -0
- CodeBLEU/my_codebleu.py +80 -0
- CodeBLEU/parser/DFG.py +1184 -0
- CodeBLEU/parser/__init__.py +8 -0
- CodeBLEU/parser/build.py +21 -0
- CodeBLEU/parser/build.sh +8 -0
- CodeBLEU/parser/my-languages.so +3 -0
- CodeBLEU/parser/utils.py +101 -0
- CodeBLEU/predictions.txt +10 -0
- CodeBLEU/readme.txt +1 -0
- CodeBLEU/references.txt +10 -0
- CodeBLEU/syntax_match.py +75 -0
- CodeBLEU/utils.py +106 -0
- CodeBLEU/weighted_ngram_match.py +558 -0
- README.md +2 -2
- __init__.py +0 -0
- codebleu.py +52 -28
- requirements.txt +2 -1
.gitattributes
CHANGED
|
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
CodeBLEU/parser/my-languages.so filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
.vscode
|
CodeBLEU/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .my_codebleu import calc_codebleu
|
CodeBLEU/bleu.py
ADDED
|
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Natural Language Toolkit: BLEU Score
|
| 3 |
+
#
|
| 4 |
+
# Copyright (C) 2001-2020 NLTK Project
|
| 5 |
+
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
| 6 |
+
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
| 7 |
+
# URL: <http://nltk.org/>
|
| 8 |
+
# For license information, see LICENSE.TXT
|
| 9 |
+
|
| 10 |
+
"""BLEU score implementation."""
|
| 11 |
+
|
| 12 |
+
import math
|
| 13 |
+
import sys
|
| 14 |
+
from fractions import Fraction
|
| 15 |
+
import warnings
|
| 16 |
+
from collections import Counter
|
| 17 |
+
|
| 18 |
+
from .utils import ngrams
|
| 19 |
+
import pdb
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def sentence_bleu(
|
| 23 |
+
references,
|
| 24 |
+
hypothesis,
|
| 25 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
| 26 |
+
smoothing_function=None,
|
| 27 |
+
auto_reweigh=False,
|
| 28 |
+
):
|
| 29 |
+
"""
|
| 30 |
+
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
| 31 |
+
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
| 32 |
+
"BLEU: a method for automatic evaluation of machine translation."
|
| 33 |
+
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
| 34 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
| 35 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
| 36 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
| 37 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
| 38 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
| 39 |
+
... 'that', 'party', 'direct']
|
| 40 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
| 41 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
| 42 |
+
... 'heed', 'Party', 'commands']
|
| 43 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
| 44 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
| 45 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
| 46 |
+
... 'Party']
|
| 47 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
| 48 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
| 49 |
+
... 'of', 'the', 'party']
|
| 50 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
| 51 |
+
0.5045...
|
| 52 |
+
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
| 53 |
+
value 0. This is because the precision for the order of n-grams without
|
| 54 |
+
overlap is 0, and the geometric mean in the final BLEU score computation
|
| 55 |
+
multiplies the 0 with the precision of other n-grams. This results in 0
|
| 56 |
+
(independently of the precision of the othe n-gram orders). The following
|
| 57 |
+
example has zero 3-gram and 4-gram overlaps:
|
| 58 |
+
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
| 59 |
+
0.0
|
| 60 |
+
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
| 61 |
+
function can be used.
|
| 62 |
+
>>> chencherry = SmoothingFunction()
|
| 63 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
| 64 |
+
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
| 65 |
+
0.0370...
|
| 66 |
+
The default BLEU calculates a score for up to 4-grams using uniform
|
| 67 |
+
weights (this is called BLEU-4). To evaluate your translations with
|
| 68 |
+
higher/lower order ngrams, use customized weights. E.g. when accounting
|
| 69 |
+
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
| 70 |
+
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
| 71 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
| 72 |
+
0.3920...
|
| 73 |
+
:param references: reference sentences
|
| 74 |
+
:type references: list(list(str))
|
| 75 |
+
:param hypothesis: a hypothesis sentence
|
| 76 |
+
:type hypothesis: list(str)
|
| 77 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
| 78 |
+
:type weights: list(float)
|
| 79 |
+
:param smoothing_function:
|
| 80 |
+
:type smoothing_function: SmoothingFunction
|
| 81 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
| 82 |
+
:type auto_reweigh: bool
|
| 83 |
+
:return: The sentence-level BLEU score.
|
| 84 |
+
:rtype: float
|
| 85 |
+
"""
|
| 86 |
+
return corpus_bleu(
|
| 87 |
+
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def corpus_bleu(
|
| 92 |
+
list_of_references,
|
| 93 |
+
hypotheses,
|
| 94 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
| 95 |
+
smoothing_function=None,
|
| 96 |
+
auto_reweigh=False,
|
| 97 |
+
):
|
| 98 |
+
"""
|
| 99 |
+
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
| 100 |
+
the hypotheses and their respective references.
|
| 101 |
+
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
| 102 |
+
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
| 103 |
+
the micro-average precision (i.e. summing the numerators and denominators
|
| 104 |
+
for each hypothesis-reference(s) pairs before the division).
|
| 105 |
+
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
| 106 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
| 107 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
| 108 |
+
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
| 109 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
| 110 |
+
... 'heed', 'Party', 'commands']
|
| 111 |
+
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
| 112 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
| 113 |
+
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
| 114 |
+
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
| 115 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
| 116 |
+
... 'of', 'the', 'party']
|
| 117 |
+
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
| 118 |
+
... 'interested', 'in', 'world', 'history']
|
| 119 |
+
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
| 120 |
+
... 'because', 'he', 'read', 'the', 'book']
|
| 121 |
+
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
| 122 |
+
>>> hypotheses = [hyp1, hyp2]
|
| 123 |
+
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
| 124 |
+
0.5920...
|
| 125 |
+
The example below show that corpus_bleu() is different from averaging
|
| 126 |
+
sentence_bleu() for hypotheses
|
| 127 |
+
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
| 128 |
+
>>> score2 = sentence_bleu([ref2a], hyp2)
|
| 129 |
+
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
| 130 |
+
0.6223...
|
| 131 |
+
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
| 132 |
+
:type list_of_references: list(list(list(str)))
|
| 133 |
+
:param hypotheses: a list of hypothesis sentences
|
| 134 |
+
:type hypotheses: list(list(str))
|
| 135 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
| 136 |
+
:type weights: list(float)
|
| 137 |
+
:param smoothing_function:
|
| 138 |
+
:type smoothing_function: SmoothingFunction
|
| 139 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
| 140 |
+
:type auto_reweigh: bool
|
| 141 |
+
:return: The corpus-level BLEU score.
|
| 142 |
+
:rtype: float
|
| 143 |
+
"""
|
| 144 |
+
# Before proceeding to compute BLEU, perform sanity checks.
|
| 145 |
+
|
| 146 |
+
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
| 147 |
+
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
| 148 |
+
hyp_lengths, ref_lengths = 0, 0
|
| 149 |
+
|
| 150 |
+
assert len(list_of_references) == len(hypotheses), (
|
| 151 |
+
"The number of hypotheses and their reference(s) should be the " "same "
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Iterate through each hypothesis and their corresponding references.
|
| 155 |
+
for references, hypothesis in zip(list_of_references, hypotheses):
|
| 156 |
+
# For each order of ngram, calculate the numerator and
|
| 157 |
+
# denominator for the corpus-level modified precision.
|
| 158 |
+
for i, _ in enumerate(weights, start=1):
|
| 159 |
+
p_i = modified_precision(references, hypothesis, i)
|
| 160 |
+
p_numerators[i] += p_i.numerator
|
| 161 |
+
p_denominators[i] += p_i.denominator
|
| 162 |
+
|
| 163 |
+
# Calculate the hypothesis length and the closest reference length.
|
| 164 |
+
# Adds them to the corpus-level hypothesis and reference counts.
|
| 165 |
+
hyp_len = len(hypothesis)
|
| 166 |
+
hyp_lengths += hyp_len
|
| 167 |
+
ref_lengths += closest_ref_length(references, hyp_len)
|
| 168 |
+
|
| 169 |
+
# Calculate corpus-level brevity penalty.
|
| 170 |
+
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
| 171 |
+
|
| 172 |
+
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
| 173 |
+
# order of n-grams < 4 and weights is set at default.
|
| 174 |
+
if auto_reweigh:
|
| 175 |
+
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
| 176 |
+
weights = (1 / hyp_lengths,) * hyp_lengths
|
| 177 |
+
|
| 178 |
+
# Collects the various precision values for the different ngram orders.
|
| 179 |
+
p_n = [
|
| 180 |
+
Fraction(p_numerators[i], p_denominators[i], _normalize=False)
|
| 181 |
+
for i, _ in enumerate(weights, start=1)
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
# Returns 0 if there's no matching n-grams
|
| 185 |
+
# We only need to check for p_numerators[1] == 0, since if there's
|
| 186 |
+
# no unigrams, there won't be any higher order ngrams.
|
| 187 |
+
if p_numerators[1] == 0:
|
| 188 |
+
return 0
|
| 189 |
+
|
| 190 |
+
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
| 191 |
+
if not smoothing_function:
|
| 192 |
+
smoothing_function = SmoothingFunction().method1
|
| 193 |
+
# Smoothen the modified precision.
|
| 194 |
+
# Note: smoothing_function() may convert values into floats;
|
| 195 |
+
# it tries to retain the Fraction object as much as the
|
| 196 |
+
# smoothing method allows.
|
| 197 |
+
p_n = smoothing_function(
|
| 198 |
+
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
| 199 |
+
)
|
| 200 |
+
s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n))
|
| 201 |
+
s = bp * math.exp(math.fsum(s))
|
| 202 |
+
return s
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def modified_precision(references, hypothesis, n):
|
| 206 |
+
"""
|
| 207 |
+
Calculate modified ngram precision.
|
| 208 |
+
The normal precision method may lead to some wrong translations with
|
| 209 |
+
high-precision, e.g., the translation, in which a word of reference
|
| 210 |
+
repeats several times, has very high precision.
|
| 211 |
+
This function only returns the Fraction object that contains the numerator
|
| 212 |
+
and denominator necessary to calculate the corpus-level precision.
|
| 213 |
+
To calculate the modified precision for a single pair of hypothesis and
|
| 214 |
+
references, cast the Fraction object into a float.
|
| 215 |
+
The famous "the the the ... " example shows that you can get BLEU precision
|
| 216 |
+
by duplicating high frequency words.
|
| 217 |
+
>>> reference1 = 'the cat is on the mat'.split()
|
| 218 |
+
>>> reference2 = 'there is a cat on the mat'.split()
|
| 219 |
+
>>> hypothesis1 = 'the the the the the the the'.split()
|
| 220 |
+
>>> references = [reference1, reference2]
|
| 221 |
+
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
| 222 |
+
0.2857...
|
| 223 |
+
In the modified n-gram precision, a reference word will be considered
|
| 224 |
+
exhausted after a matching hypothesis word is identified, e.g.
|
| 225 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
| 226 |
+
... 'ensures', 'that', 'the', 'military', 'will',
|
| 227 |
+
... 'forever', 'heed', 'Party', 'commands']
|
| 228 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
| 229 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
| 230 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
| 231 |
+
... 'Party']
|
| 232 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
| 233 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
| 234 |
+
... 'of', 'the', 'party']
|
| 235 |
+
>>> hypothesis = 'of the'.split()
|
| 236 |
+
>>> references = [reference1, reference2, reference3]
|
| 237 |
+
>>> float(modified_precision(references, hypothesis, n=1))
|
| 238 |
+
1.0
|
| 239 |
+
>>> float(modified_precision(references, hypothesis, n=2))
|
| 240 |
+
1.0
|
| 241 |
+
An example of a normal machine translation hypothesis:
|
| 242 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
| 243 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
| 244 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
| 245 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
| 246 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
| 247 |
+
... 'that', 'party', 'direct']
|
| 248 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
| 249 |
+
... 'ensures', 'that', 'the', 'military', 'will',
|
| 250 |
+
... 'forever', 'heed', 'Party', 'commands']
|
| 251 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
| 252 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
| 253 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
| 254 |
+
... 'Party']
|
| 255 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
| 256 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
| 257 |
+
... 'of', 'the', 'party']
|
| 258 |
+
>>> references = [reference1, reference2, reference3]
|
| 259 |
+
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
| 260 |
+
0.9444...
|
| 261 |
+
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
|
| 262 |
+
0.5714...
|
| 263 |
+
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
|
| 264 |
+
0.5882352941176471
|
| 265 |
+
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
|
| 266 |
+
0.07692...
|
| 267 |
+
:param references: A list of reference translations.
|
| 268 |
+
:type references: list(list(str))
|
| 269 |
+
:param hypothesis: A hypothesis translation.
|
| 270 |
+
:type hypothesis: list(str)
|
| 271 |
+
:param n: The ngram order.
|
| 272 |
+
:type n: int
|
| 273 |
+
:return: BLEU's modified precision for the nth order ngram.
|
| 274 |
+
:rtype: Fraction
|
| 275 |
+
"""
|
| 276 |
+
# Extracts all ngrams in hypothesis
|
| 277 |
+
# Set an empty Counter if hypothesis is empty.
|
| 278 |
+
|
| 279 |
+
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
| 280 |
+
# Extract a union of references' counts.
|
| 281 |
+
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
| 282 |
+
max_counts = {}
|
| 283 |
+
for reference in references:
|
| 284 |
+
reference_counts = (
|
| 285 |
+
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
| 286 |
+
)
|
| 287 |
+
for ngram in counts:
|
| 288 |
+
max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
|
| 289 |
+
|
| 290 |
+
# Assigns the intersection between hypothesis and references' counts.
|
| 291 |
+
clipped_counts = {
|
| 292 |
+
ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
numerator = sum(clipped_counts.values())
|
| 296 |
+
# Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
| 297 |
+
# Usually this happens when the ngram order is > len(reference).
|
| 298 |
+
denominator = max(1, sum(counts.values()))
|
| 299 |
+
|
| 300 |
+
return Fraction(numerator, denominator, _normalize=False)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def closest_ref_length(references, hyp_len):
|
| 304 |
+
"""
|
| 305 |
+
This function finds the reference that is the closest length to the
|
| 306 |
+
hypothesis. The closest reference length is referred to as *r* variable
|
| 307 |
+
from the brevity penalty formula in Papineni et. al. (2002)
|
| 308 |
+
:param references: A list of reference translations.
|
| 309 |
+
:type references: list(list(str))
|
| 310 |
+
:param hyp_len: The length of the hypothesis.
|
| 311 |
+
:type hyp_len: int
|
| 312 |
+
:return: The length of the reference that's closest to the hypothesis.
|
| 313 |
+
:rtype: int
|
| 314 |
+
"""
|
| 315 |
+
ref_lens = (len(reference) for reference in references)
|
| 316 |
+
closest_ref_len = min(
|
| 317 |
+
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
| 318 |
+
)
|
| 319 |
+
return closest_ref_len
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def brevity_penalty(closest_ref_len, hyp_len):
|
| 323 |
+
"""
|
| 324 |
+
Calculate brevity penalty.
|
| 325 |
+
As the modified n-gram precision still has the problem from the short
|
| 326 |
+
length sentence, brevity penalty is used to modify the overall BLEU
|
| 327 |
+
score according to length.
|
| 328 |
+
An example from the paper. There are three references with length 12, 15
|
| 329 |
+
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
| 330 |
+
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
| 331 |
+
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
| 332 |
+
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
| 333 |
+
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
| 334 |
+
>>> references = [reference1, reference2, reference3]
|
| 335 |
+
>>> hyp_len = len(hypothesis)
|
| 336 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 337 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
| 338 |
+
1.0
|
| 339 |
+
In case a hypothesis translation is shorter than the references, penalty is
|
| 340 |
+
applied.
|
| 341 |
+
>>> references = [['a'] * 28, ['a'] * 28]
|
| 342 |
+
>>> hypothesis = ['a'] * 12
|
| 343 |
+
>>> hyp_len = len(hypothesis)
|
| 344 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 345 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
| 346 |
+
0.2635971381157267
|
| 347 |
+
The length of the closest reference is used to compute the penalty. If the
|
| 348 |
+
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
| 349 |
+
penalty is applied because the hypothesis length (12) is less then the
|
| 350 |
+
closest reference length (13).
|
| 351 |
+
>>> references = [['a'] * 13, ['a'] * 2]
|
| 352 |
+
>>> hypothesis = ['a'] * 12
|
| 353 |
+
>>> hyp_len = len(hypothesis)
|
| 354 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 355 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
| 356 |
+
0.9200...
|
| 357 |
+
The brevity penalty doesn't depend on reference order. More importantly,
|
| 358 |
+
when two reference sentences are at the same distance, the shortest
|
| 359 |
+
reference sentence length is used.
|
| 360 |
+
>>> references = [['a'] * 13, ['a'] * 11]
|
| 361 |
+
>>> hypothesis = ['a'] * 12
|
| 362 |
+
>>> hyp_len = len(hypothesis)
|
| 363 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 364 |
+
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
| 365 |
+
>>> hyp_len = len(hypothesis)
|
| 366 |
+
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
| 367 |
+
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
| 368 |
+
>>> bp1 == bp2 == 1
|
| 369 |
+
True
|
| 370 |
+
A test example from mteval-v13a.pl (starting from the line 705):
|
| 371 |
+
>>> references = [['a'] * 11, ['a'] * 8]
|
| 372 |
+
>>> hypothesis = ['a'] * 7
|
| 373 |
+
>>> hyp_len = len(hypothesis)
|
| 374 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 375 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
| 376 |
+
0.8668...
|
| 377 |
+
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
| 378 |
+
>>> hypothesis = ['a'] * 7
|
| 379 |
+
>>> hyp_len = len(hypothesis)
|
| 380 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 381 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
| 382 |
+
1.0
|
| 383 |
+
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
| 384 |
+
sum of all the hypotheses' lengths for a corpus
|
| 385 |
+
:type hyp_len: int
|
| 386 |
+
:param closest_ref_len: The length of the closest reference for a single
|
| 387 |
+
hypothesis OR the sum of all the closest references for every hypotheses.
|
| 388 |
+
:type closest_ref_len: int
|
| 389 |
+
:return: BLEU's brevity penalty.
|
| 390 |
+
:rtype: float
|
| 391 |
+
"""
|
| 392 |
+
if hyp_len > closest_ref_len:
|
| 393 |
+
return 1
|
| 394 |
+
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
| 395 |
+
elif hyp_len == 0:
|
| 396 |
+
return 0
|
| 397 |
+
else:
|
| 398 |
+
return math.exp(1 - closest_ref_len / hyp_len)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
class SmoothingFunction:
|
| 402 |
+
"""
|
| 403 |
+
This is an implementation of the smoothing techniques
|
| 404 |
+
for segment-level BLEU scores that was presented in
|
| 405 |
+
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
| 406 |
+
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
| 407 |
+
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
| 408 |
+
"""
|
| 409 |
+
|
| 410 |
+
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
| 411 |
+
"""
|
| 412 |
+
This will initialize the parameters required for the various smoothing
|
| 413 |
+
techniques, the default values are set to the numbers used in the
|
| 414 |
+
experiments from Chen and Cherry (2014).
|
| 415 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
| 416 |
+
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
| 417 |
+
... 'commands', 'of', 'the', 'party']
|
| 418 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
| 419 |
+
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
| 420 |
+
... 'Party', 'commands']
|
| 421 |
+
>>> chencherry = SmoothingFunction()
|
| 422 |
+
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
| 423 |
+
0.4118...
|
| 424 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
| 425 |
+
0.4118...
|
| 426 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
| 427 |
+
0.4118...
|
| 428 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
| 429 |
+
0.4489...
|
| 430 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
| 431 |
+
0.4118...
|
| 432 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
| 433 |
+
0.4118...
|
| 434 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
| 435 |
+
0.4905...
|
| 436 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
| 437 |
+
0.4135...
|
| 438 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
| 439 |
+
0.4905...
|
| 440 |
+
:param epsilon: the epsilon value use in method 1
|
| 441 |
+
:type epsilon: float
|
| 442 |
+
:param alpha: the alpha value use in method 6
|
| 443 |
+
:type alpha: int
|
| 444 |
+
:param k: the k value use in method 4
|
| 445 |
+
:type k: int
|
| 446 |
+
"""
|
| 447 |
+
self.epsilon = epsilon
|
| 448 |
+
self.alpha = alpha
|
| 449 |
+
self.k = k
|
| 450 |
+
|
| 451 |
+
def method0(self, p_n, *args, **kwargs):
|
| 452 |
+
"""
|
| 453 |
+
No smoothing.
|
| 454 |
+
"""
|
| 455 |
+
p_n_new = []
|
| 456 |
+
for i, p_i in enumerate(p_n):
|
| 457 |
+
if p_i.numerator != 0:
|
| 458 |
+
p_n_new.append(p_i)
|
| 459 |
+
else:
|
| 460 |
+
_msg = str(
|
| 461 |
+
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
| 462 |
+
"Therefore the BLEU score evaluates to 0, independently of\n"
|
| 463 |
+
"how many N-gram overlaps of lower order it contains.\n"
|
| 464 |
+
"Consider using lower n-gram order or use "
|
| 465 |
+
"SmoothingFunction()"
|
| 466 |
+
).format(i + 1)
|
| 467 |
+
warnings.warn(_msg)
|
| 468 |
+
# When numerator==0 where denonminator==0 or !=0, the result
|
| 469 |
+
# for the precision score should be equal to 0 or undefined.
|
| 470 |
+
# Due to BLEU geometric mean computation in logarithm space,
|
| 471 |
+
# we we need to take the return sys.float_info.min such that
|
| 472 |
+
# math.log(sys.float_info.min) returns a 0 precision score.
|
| 473 |
+
p_n_new.append(sys.float_info.min)
|
| 474 |
+
return p_n_new
|
| 475 |
+
|
| 476 |
+
def method1(self, p_n, *args, **kwargs):
|
| 477 |
+
"""
|
| 478 |
+
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
| 479 |
+
"""
|
| 480 |
+
return [
|
| 481 |
+
(p_i.numerator + self.epsilon) / p_i.denominator
|
| 482 |
+
if p_i.numerator == 0
|
| 483 |
+
else p_i
|
| 484 |
+
for p_i in p_n
|
| 485 |
+
]
|
| 486 |
+
|
| 487 |
+
def method2(self, p_n, *args, **kwargs):
|
| 488 |
+
"""
|
| 489 |
+
Smoothing method 2: Add 1 to both numerator and denominator from
|
| 490 |
+
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
| 491 |
+
machine translation quality using longest common subsequence and
|
| 492 |
+
skip-bigram statistics. In ACL04.
|
| 493 |
+
"""
|
| 494 |
+
return [
|
| 495 |
+
Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False)
|
| 496 |
+
for p_i in p_n
|
| 497 |
+
]
|
| 498 |
+
|
| 499 |
+
def method3(self, p_n, *args, **kwargs):
|
| 500 |
+
"""
|
| 501 |
+
Smoothing method 3: NIST geometric sequence smoothing
|
| 502 |
+
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
| 503 |
+
precision score whose matching n-gram count is null.
|
| 504 |
+
k is 1 for the first 'n' value for which the n-gram match count is null/
|
| 505 |
+
For example, if the text contains:
|
| 506 |
+
- one 2-gram match
|
| 507 |
+
- and (consequently) two 1-gram matches
|
| 508 |
+
the n-gram count for each individual precision score would be:
|
| 509 |
+
- n=1 => prec_count = 2 (two unigrams)
|
| 510 |
+
- n=2 => prec_count = 1 (one bigram)
|
| 511 |
+
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
| 512 |
+
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
| 513 |
+
"""
|
| 514 |
+
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
| 515 |
+
for i, p_i in enumerate(p_n):
|
| 516 |
+
if p_i.numerator == 0:
|
| 517 |
+
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
| 518 |
+
incvnt += 1
|
| 519 |
+
return p_n
|
| 520 |
+
|
| 521 |
+
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 522 |
+
"""
|
| 523 |
+
Smoothing method 4:
|
| 524 |
+
Shorter translations may have inflated precision values due to having
|
| 525 |
+
smaller denominators; therefore, we give them proportionally
|
| 526 |
+
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
| 527 |
+
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
| 528 |
+
"""
|
| 529 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 530 |
+
for i, p_i in enumerate(p_n):
|
| 531 |
+
if p_i.numerator == 0 and hyp_len != 0:
|
| 532 |
+
incvnt = i + 1 * self.k / math.log(
|
| 533 |
+
hyp_len
|
| 534 |
+
) # Note that this K is different from the K from NIST.
|
| 535 |
+
p_n[i] = incvnt / p_i.denominator
|
| 536 |
+
return p_n
|
| 537 |
+
|
| 538 |
+
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 539 |
+
"""
|
| 540 |
+
Smoothing method 5:
|
| 541 |
+
The matched counts for similar values of n should be similar. To a
|
| 542 |
+
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
| 543 |
+
matched counts.
|
| 544 |
+
"""
|
| 545 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 546 |
+
m = {}
|
| 547 |
+
# Requires an precision value for an addition ngram order.
|
| 548 |
+
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
| 549 |
+
m[-1] = p_n[0] + 1
|
| 550 |
+
for i, p_i in enumerate(p_n):
|
| 551 |
+
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
| 552 |
+
m[i] = p_n[i]
|
| 553 |
+
return p_n
|
| 554 |
+
|
| 555 |
+
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 556 |
+
"""
|
| 557 |
+
Smoothing method 6:
|
| 558 |
+
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
| 559 |
+
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
| 560 |
+
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
| 561 |
+
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
| 562 |
+
Gradient Ascent. In NAACL.
|
| 563 |
+
"""
|
| 564 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 565 |
+
# This smoothing only works when p_1 and p_2 is non-zero.
|
| 566 |
+
# Raise an error with an appropriate message when the input is too short
|
| 567 |
+
# to use this smoothing technique.
|
| 568 |
+
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
| 569 |
+
for i, p_i in enumerate(p_n):
|
| 570 |
+
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
| 571 |
+
continue
|
| 572 |
+
else:
|
| 573 |
+
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
| 574 |
+
# No. of ngrams in translation that matches the reference.
|
| 575 |
+
m = p_i.numerator
|
| 576 |
+
# No. of ngrams in translation.
|
| 577 |
+
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
| 578 |
+
# Calculates the interpolated precision.
|
| 579 |
+
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
| 580 |
+
return p_n
|
| 581 |
+
|
| 582 |
+
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 583 |
+
"""
|
| 584 |
+
Smoothing method 7:
|
| 585 |
+
Interpolates methods 4 and 5.
|
| 586 |
+
"""
|
| 587 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 588 |
+
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
| 589 |
+
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
| 590 |
+
return p_n
|
CodeBLEU/dataflow_match.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
from .parser import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
| 6 |
+
from .parser import (remove_comments_and_docstrings,
|
| 7 |
+
tree_to_token_index,
|
| 8 |
+
index_to_code_token,
|
| 9 |
+
tree_to_variable_index)
|
| 10 |
+
from tree_sitter import Language, Parser
|
| 11 |
+
import pdb
|
| 12 |
+
|
| 13 |
+
dfg_function={
|
| 14 |
+
'python':DFG_python,
|
| 15 |
+
'java':DFG_java,
|
| 16 |
+
'ruby':DFG_ruby,
|
| 17 |
+
'go':DFG_go,
|
| 18 |
+
'php':DFG_php,
|
| 19 |
+
'javascript':DFG_javascript,
|
| 20 |
+
'c_sharp':DFG_csharp,
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
def calc_dataflow_match(references, candidate, lang):
|
| 24 |
+
return corpus_dataflow_match([references], [candidate], lang)
|
| 25 |
+
|
| 26 |
+
def corpus_dataflow_match(references, candidates, lang):
|
| 27 |
+
LANGUAGE = Language(os.path.abspath(os.path.dirname(__file__)) + '/parser/my-languages.so', lang)
|
| 28 |
+
parser = Parser()
|
| 29 |
+
parser.set_language(LANGUAGE)
|
| 30 |
+
parser = [parser,dfg_function[lang]]
|
| 31 |
+
match_count = 0
|
| 32 |
+
total_count = 0
|
| 33 |
+
|
| 34 |
+
for i in range(len(candidates)):
|
| 35 |
+
references_sample = references[i]
|
| 36 |
+
candidate = candidates[i]
|
| 37 |
+
for reference in references_sample:
|
| 38 |
+
try:
|
| 39 |
+
candidate=remove_comments_and_docstrings(candidate,'java')
|
| 40 |
+
except:
|
| 41 |
+
pass
|
| 42 |
+
try:
|
| 43 |
+
reference=remove_comments_and_docstrings(reference,'java')
|
| 44 |
+
except:
|
| 45 |
+
pass
|
| 46 |
+
|
| 47 |
+
cand_dfg = get_data_flow(candidate, parser)
|
| 48 |
+
ref_dfg = get_data_flow(reference, parser)
|
| 49 |
+
|
| 50 |
+
normalized_cand_dfg = normalize_dataflow(cand_dfg)
|
| 51 |
+
normalized_ref_dfg = normalize_dataflow(ref_dfg)
|
| 52 |
+
|
| 53 |
+
if len(normalized_ref_dfg) > 0:
|
| 54 |
+
total_count += len(normalized_ref_dfg)
|
| 55 |
+
for dataflow in normalized_ref_dfg:
|
| 56 |
+
if dataflow in normalized_cand_dfg:
|
| 57 |
+
match_count += 1
|
| 58 |
+
normalized_cand_dfg.remove(dataflow)
|
| 59 |
+
if total_count == 0:
|
| 60 |
+
print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.")
|
| 61 |
+
return 0
|
| 62 |
+
score = match_count / total_count
|
| 63 |
+
return score
|
| 64 |
+
|
| 65 |
+
def get_data_flow(code, parser):
|
| 66 |
+
try:
|
| 67 |
+
tree = parser[0].parse(bytes(code,'utf8'))
|
| 68 |
+
root_node = tree.root_node
|
| 69 |
+
tokens_index=tree_to_token_index(root_node)
|
| 70 |
+
code=code.split('\n')
|
| 71 |
+
code_tokens=[index_to_code_token(x,code) for x in tokens_index]
|
| 72 |
+
index_to_code={}
|
| 73 |
+
for idx,(index,code) in enumerate(zip(tokens_index,code_tokens)):
|
| 74 |
+
index_to_code[index]=(idx,code)
|
| 75 |
+
try:
|
| 76 |
+
DFG,_=parser[1](root_node,index_to_code,{})
|
| 77 |
+
except:
|
| 78 |
+
DFG=[]
|
| 79 |
+
DFG=sorted(DFG,key=lambda x:x[1])
|
| 80 |
+
indexs=set()
|
| 81 |
+
for d in DFG:
|
| 82 |
+
if len(d[-1])!=0:
|
| 83 |
+
indexs.add(d[1])
|
| 84 |
+
for x in d[-1]:
|
| 85 |
+
indexs.add(x)
|
| 86 |
+
new_DFG=[]
|
| 87 |
+
for d in DFG:
|
| 88 |
+
if d[1] in indexs:
|
| 89 |
+
new_DFG.append(d)
|
| 90 |
+
codes=code_tokens
|
| 91 |
+
dfg=new_DFG
|
| 92 |
+
except:
|
| 93 |
+
codes=code.split()
|
| 94 |
+
dfg=[]
|
| 95 |
+
#merge nodes
|
| 96 |
+
dic={}
|
| 97 |
+
for d in dfg:
|
| 98 |
+
if d[1] not in dic:
|
| 99 |
+
dic[d[1]]=d
|
| 100 |
+
else:
|
| 101 |
+
dic[d[1]]=(d[0],d[1],d[2],list(set(dic[d[1]][3]+d[3])),list(set(dic[d[1]][4]+d[4])))
|
| 102 |
+
DFG=[]
|
| 103 |
+
for d in dic:
|
| 104 |
+
DFG.append(dic[d])
|
| 105 |
+
dfg=DFG
|
| 106 |
+
return dfg
|
| 107 |
+
|
| 108 |
+
def normalize_dataflow_item(dataflow_item):
|
| 109 |
+
var_name = dataflow_item[0]
|
| 110 |
+
var_pos = dataflow_item[1]
|
| 111 |
+
relationship = dataflow_item[2]
|
| 112 |
+
par_vars_name_list = dataflow_item[3]
|
| 113 |
+
par_vars_pos_list = dataflow_item[4]
|
| 114 |
+
|
| 115 |
+
var_names = list(set(par_vars_name_list+[var_name]))
|
| 116 |
+
norm_names = {}
|
| 117 |
+
for i in range(len(var_names)):
|
| 118 |
+
norm_names[var_names[i]] = 'var_'+str(i)
|
| 119 |
+
|
| 120 |
+
norm_var_name = norm_names[var_name]
|
| 121 |
+
relationship = dataflow_item[2]
|
| 122 |
+
norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list]
|
| 123 |
+
|
| 124 |
+
return (norm_var_name, relationship, norm_par_vars_name_list)
|
| 125 |
+
|
| 126 |
+
def normalize_dataflow(dataflow):
|
| 127 |
+
var_dict = {}
|
| 128 |
+
i = 0
|
| 129 |
+
normalized_dataflow = []
|
| 130 |
+
for item in dataflow:
|
| 131 |
+
var_name = item[0]
|
| 132 |
+
relationship = item[2]
|
| 133 |
+
par_vars_name_list = item[3]
|
| 134 |
+
for name in par_vars_name_list:
|
| 135 |
+
if name not in var_dict:
|
| 136 |
+
var_dict[name] = 'var_'+str(i)
|
| 137 |
+
i += 1
|
| 138 |
+
if var_name not in var_dict:
|
| 139 |
+
var_dict[var_name] = 'var_'+str(i)
|
| 140 |
+
i+= 1
|
| 141 |
+
normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list]))
|
| 142 |
+
return normalized_dataflow
|
| 143 |
+
|
CodeBLEU/keywords/c_sharp.txt
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
abstract
|
| 2 |
+
as
|
| 3 |
+
base
|
| 4 |
+
bool
|
| 5 |
+
break
|
| 6 |
+
byte
|
| 7 |
+
case
|
| 8 |
+
catch
|
| 9 |
+
char
|
| 10 |
+
checked
|
| 11 |
+
class
|
| 12 |
+
const
|
| 13 |
+
continue
|
| 14 |
+
decimal
|
| 15 |
+
default
|
| 16 |
+
delegate
|
| 17 |
+
do
|
| 18 |
+
double
|
| 19 |
+
else
|
| 20 |
+
enum
|
| 21 |
+
event
|
| 22 |
+
explicit
|
| 23 |
+
extern
|
| 24 |
+
false
|
| 25 |
+
finally
|
| 26 |
+
fixed
|
| 27 |
+
float
|
| 28 |
+
for
|
| 29 |
+
foreach
|
| 30 |
+
goto
|
| 31 |
+
if
|
| 32 |
+
implicit
|
| 33 |
+
in
|
| 34 |
+
int
|
| 35 |
+
interface
|
| 36 |
+
internal
|
| 37 |
+
is
|
| 38 |
+
lock
|
| 39 |
+
long
|
| 40 |
+
namespace
|
| 41 |
+
new
|
| 42 |
+
null
|
| 43 |
+
object
|
| 44 |
+
operator
|
| 45 |
+
out
|
| 46 |
+
override
|
| 47 |
+
params
|
| 48 |
+
private
|
| 49 |
+
protected
|
| 50 |
+
public
|
| 51 |
+
readonly
|
| 52 |
+
ref
|
| 53 |
+
return
|
| 54 |
+
sbyte
|
| 55 |
+
sealed
|
| 56 |
+
short
|
| 57 |
+
sizeof
|
| 58 |
+
stackalloc
|
| 59 |
+
static
|
| 60 |
+
string
|
| 61 |
+
struct
|
| 62 |
+
switch
|
| 63 |
+
this
|
| 64 |
+
throw
|
| 65 |
+
true
|
| 66 |
+
try
|
| 67 |
+
typeof
|
| 68 |
+
uint
|
| 69 |
+
ulong
|
| 70 |
+
unchecked
|
| 71 |
+
unsafe
|
| 72 |
+
ushort
|
| 73 |
+
using
|
| 74 |
+
virtual
|
| 75 |
+
void
|
| 76 |
+
volatile
|
| 77 |
+
while
|
| 78 |
+
add
|
| 79 |
+
alias
|
| 80 |
+
ascending
|
| 81 |
+
async
|
| 82 |
+
await
|
| 83 |
+
by
|
| 84 |
+
descending
|
| 85 |
+
dynamic
|
| 86 |
+
equals
|
| 87 |
+
from
|
| 88 |
+
get
|
| 89 |
+
global
|
| 90 |
+
group
|
| 91 |
+
into
|
| 92 |
+
join
|
| 93 |
+
let
|
| 94 |
+
nameof
|
| 95 |
+
notnull
|
| 96 |
+
on
|
| 97 |
+
orderby
|
| 98 |
+
partial
|
| 99 |
+
remove
|
| 100 |
+
select
|
| 101 |
+
set
|
| 102 |
+
unmanaged
|
| 103 |
+
value
|
| 104 |
+
var
|
| 105 |
+
when
|
| 106 |
+
where
|
| 107 |
+
yield
|
CodeBLEU/keywords/java.txt
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
abstract
|
| 2 |
+
assert
|
| 3 |
+
boolean
|
| 4 |
+
break
|
| 5 |
+
byte
|
| 6 |
+
case
|
| 7 |
+
catch
|
| 8 |
+
char
|
| 9 |
+
class
|
| 10 |
+
const
|
| 11 |
+
continue
|
| 12 |
+
default
|
| 13 |
+
do
|
| 14 |
+
double
|
| 15 |
+
else
|
| 16 |
+
enum
|
| 17 |
+
extends
|
| 18 |
+
final
|
| 19 |
+
finally
|
| 20 |
+
float
|
| 21 |
+
for
|
| 22 |
+
goto
|
| 23 |
+
if
|
| 24 |
+
implements
|
| 25 |
+
import
|
| 26 |
+
instanceof
|
| 27 |
+
int
|
| 28 |
+
interface
|
| 29 |
+
long
|
| 30 |
+
native
|
| 31 |
+
new
|
| 32 |
+
package
|
| 33 |
+
private
|
| 34 |
+
protected
|
| 35 |
+
public
|
| 36 |
+
return
|
| 37 |
+
short
|
| 38 |
+
static
|
| 39 |
+
strictfp
|
| 40 |
+
super
|
| 41 |
+
switch
|
| 42 |
+
synchronized
|
| 43 |
+
this
|
| 44 |
+
throw
|
| 45 |
+
throws
|
| 46 |
+
transient
|
| 47 |
+
try
|
| 48 |
+
void
|
| 49 |
+
volatile
|
| 50 |
+
while
|
CodeBLEU/keywords/python.txt
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
False
|
| 2 |
+
None
|
| 3 |
+
True
|
| 4 |
+
and
|
| 5 |
+
as
|
| 6 |
+
assert
|
| 7 |
+
async
|
| 8 |
+
await
|
| 9 |
+
break
|
| 10 |
+
class
|
| 11 |
+
continue
|
| 12 |
+
def
|
| 13 |
+
del
|
| 14 |
+
elif
|
| 15 |
+
else
|
| 16 |
+
except
|
| 17 |
+
finally
|
| 18 |
+
for
|
| 19 |
+
from
|
| 20 |
+
global
|
| 21 |
+
if
|
| 22 |
+
import
|
| 23 |
+
in
|
| 24 |
+
is
|
| 25 |
+
lambda
|
| 26 |
+
nonlocal
|
| 27 |
+
not
|
| 28 |
+
or
|
| 29 |
+
pass
|
| 30 |
+
raise
|
| 31 |
+
return
|
| 32 |
+
try
|
| 33 |
+
while
|
| 34 |
+
with
|
| 35 |
+
yield
|
CodeBLEU/my_codebleu.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
# -*- coding:utf-8 -*-
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
from . import bleu
|
| 8 |
+
from . import weighted_ngram_match
|
| 9 |
+
from . import syntax_match
|
| 10 |
+
from . import dataflow_match
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def calc_codebleu(predictions, references, lang, tokenizer=None, params='0.25,0.25,0.25,0.25'):
|
| 14 |
+
"""_summary_
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
predictions (list[str]): list of predictions
|
| 18 |
+
references (list[str]): list of lists with references
|
| 19 |
+
lang (str): ['java','js','c_sharp','php','go','python','ruby']
|
| 20 |
+
tokenizer (callable): tokenizer function, Defaults to lambda s: s.split()
|
| 21 |
+
params (str, optional): Defaults to '0.25,0.25,0.25,0.25'.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
alpha, beta, gamma, theta = [float(x) for x in params.split(',')]
|
| 25 |
+
|
| 26 |
+
# preprocess inputs
|
| 27 |
+
references = [[x.strip() for x in ref] for ref in references]
|
| 28 |
+
hypothesis = [x.strip() for x in predictions]
|
| 29 |
+
|
| 30 |
+
if not len(references) == len(hypothesis):
|
| 31 |
+
raise ValueError
|
| 32 |
+
|
| 33 |
+
# calculate ngram match (BLEU)
|
| 34 |
+
if tokenizer is None:
|
| 35 |
+
tokenizer = lambda s: s.split()
|
| 36 |
+
|
| 37 |
+
tokenized_hyps = [tokenizer(x) for x in hypothesis]
|
| 38 |
+
tokenized_refs = [[tokenizer(x) for x in reference]
|
| 39 |
+
for reference in references]
|
| 40 |
+
|
| 41 |
+
ngram_match_score = bleu.corpus_bleu(tokenized_refs, tokenized_hyps)
|
| 42 |
+
|
| 43 |
+
# calculate weighted ngram match
|
| 44 |
+
keywords = [x.strip() for x in open(os.path.abspath(os.path.dirname(__file__)) + '/keywords/' + lang +
|
| 45 |
+
'.txt', 'r', encoding='utf-8').readlines()]
|
| 46 |
+
|
| 47 |
+
def make_weights(reference_tokens, key_word_list):
|
| 48 |
+
return {token: 1 if token in key_word_list else 0.2
|
| 49 |
+
for token in reference_tokens}
|
| 50 |
+
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)]
|
| 51 |
+
for reference_tokens in reference] for reference in tokenized_refs]
|
| 52 |
+
|
| 53 |
+
weighted_ngram_match_score = weighted_ngram_match.corpus_bleu(
|
| 54 |
+
tokenized_refs_with_weights, tokenized_hyps)
|
| 55 |
+
|
| 56 |
+
# calculate syntax match
|
| 57 |
+
syntax_match_score = syntax_match.corpus_syntax_match(
|
| 58 |
+
references, hypothesis, lang)
|
| 59 |
+
|
| 60 |
+
# calculate dataflow match
|
| 61 |
+
dataflow_match_score = dataflow_match.corpus_dataflow_match(
|
| 62 |
+
references, hypothesis, lang)
|
| 63 |
+
|
| 64 |
+
# print('ngram match: {0}, weighted ngram match: {1}, syntax_match: {2}, dataflow_match: {3}'.
|
| 65 |
+
# format(ngram_match_score, weighted_ngram_match_score, syntax_match_score, dataflow_match_score))
|
| 66 |
+
|
| 67 |
+
code_bleu_score = alpha*ngram_match_score\
|
| 68 |
+
+ beta*weighted_ngram_match_score\
|
| 69 |
+
+ gamma*syntax_match_score\
|
| 70 |
+
+ theta*dataflow_match_score
|
| 71 |
+
|
| 72 |
+
# print('CodeBLEU score: ', code_bleu_score)
|
| 73 |
+
|
| 74 |
+
return {
|
| 75 |
+
'CodeBLEU': code_bleu_score,
|
| 76 |
+
'ngram_match_score': ngram_match_score,
|
| 77 |
+
'weighted_ngram_match_score': weighted_ngram_match_score,
|
| 78 |
+
'syntax_match_score': syntax_match_score,
|
| 79 |
+
'dataflow_match_score': dataflow_match_score
|
| 80 |
+
}
|
CodeBLEU/parser/DFG.py
ADDED
|
@@ -0,0 +1,1184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
from tree_sitter import Language, Parser
|
| 5 |
+
from .utils import (remove_comments_and_docstrings,
|
| 6 |
+
tree_to_token_index,
|
| 7 |
+
index_to_code_token,
|
| 8 |
+
tree_to_variable_index)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def DFG_python(root_node,index_to_code,states):
|
| 12 |
+
assignment=['assignment','augmented_assignment','for_in_clause']
|
| 13 |
+
if_statement=['if_statement']
|
| 14 |
+
for_statement=['for_statement']
|
| 15 |
+
while_statement=['while_statement']
|
| 16 |
+
do_first_statement=['for_in_clause']
|
| 17 |
+
def_statement=['default_parameter']
|
| 18 |
+
states=states.copy()
|
| 19 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 20 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 21 |
+
if root_node.type==code:
|
| 22 |
+
return [],states
|
| 23 |
+
elif code in states:
|
| 24 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 25 |
+
else:
|
| 26 |
+
if root_node.type=='identifier':
|
| 27 |
+
states[code]=[idx]
|
| 28 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 29 |
+
elif root_node.type in def_statement:
|
| 30 |
+
name=root_node.child_by_field_name('name')
|
| 31 |
+
value=root_node.child_by_field_name('value')
|
| 32 |
+
DFG=[]
|
| 33 |
+
if value is None:
|
| 34 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 35 |
+
for index in indexs:
|
| 36 |
+
idx,code=index_to_code[index]
|
| 37 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 38 |
+
states[code]=[idx]
|
| 39 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 40 |
+
else:
|
| 41 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 42 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 43 |
+
temp,states=DFG_python(value,index_to_code,states)
|
| 44 |
+
DFG+=temp
|
| 45 |
+
for index1 in name_indexs:
|
| 46 |
+
idx1,code1=index_to_code[index1]
|
| 47 |
+
for index2 in value_indexs:
|
| 48 |
+
idx2,code2=index_to_code[index2]
|
| 49 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 50 |
+
states[code1]=[idx1]
|
| 51 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 52 |
+
elif root_node.type in assignment:
|
| 53 |
+
if root_node.type=='for_in_clause':
|
| 54 |
+
right_nodes=[root_node.children[-1]]
|
| 55 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 56 |
+
else:
|
| 57 |
+
if root_node.child_by_field_name('right') is None:
|
| 58 |
+
return [],states
|
| 59 |
+
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
| 60 |
+
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
| 61 |
+
if len(right_nodes)!=len(left_nodes):
|
| 62 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 63 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
| 64 |
+
if len(left_nodes)==0:
|
| 65 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 66 |
+
if len(right_nodes)==0:
|
| 67 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
| 68 |
+
DFG=[]
|
| 69 |
+
for node in right_nodes:
|
| 70 |
+
temp,states=DFG_python(node,index_to_code,states)
|
| 71 |
+
DFG+=temp
|
| 72 |
+
|
| 73 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
| 74 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
| 75 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
| 76 |
+
temp=[]
|
| 77 |
+
for token1_index in left_tokens_index:
|
| 78 |
+
idx1,code1=index_to_code[token1_index]
|
| 79 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
| 80 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
| 81 |
+
states[code1]=[idx1]
|
| 82 |
+
DFG+=temp
|
| 83 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 84 |
+
elif root_node.type in if_statement:
|
| 85 |
+
DFG=[]
|
| 86 |
+
current_states=states.copy()
|
| 87 |
+
others_states=[]
|
| 88 |
+
tag=False
|
| 89 |
+
if 'else' in root_node.type:
|
| 90 |
+
tag=True
|
| 91 |
+
for child in root_node.children:
|
| 92 |
+
if 'else' in child.type:
|
| 93 |
+
tag=True
|
| 94 |
+
if child.type not in ['elif_clause','else_clause']:
|
| 95 |
+
temp,current_states=DFG_python(child,index_to_code,current_states)
|
| 96 |
+
DFG+=temp
|
| 97 |
+
else:
|
| 98 |
+
temp,new_states=DFG_python(child,index_to_code,states)
|
| 99 |
+
DFG+=temp
|
| 100 |
+
others_states.append(new_states)
|
| 101 |
+
others_states.append(current_states)
|
| 102 |
+
if tag is False:
|
| 103 |
+
others_states.append(states)
|
| 104 |
+
new_states={}
|
| 105 |
+
for dic in others_states:
|
| 106 |
+
for key in dic:
|
| 107 |
+
if key not in new_states:
|
| 108 |
+
new_states[key]=dic[key].copy()
|
| 109 |
+
else:
|
| 110 |
+
new_states[key]+=dic[key]
|
| 111 |
+
for key in new_states:
|
| 112 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 113 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 114 |
+
elif root_node.type in for_statement:
|
| 115 |
+
DFG=[]
|
| 116 |
+
for i in range(2):
|
| 117 |
+
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
| 118 |
+
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
| 119 |
+
if len(right_nodes)!=len(left_nodes):
|
| 120 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 121 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
| 122 |
+
if len(left_nodes)==0:
|
| 123 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 124 |
+
if len(right_nodes)==0:
|
| 125 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
| 126 |
+
for node in right_nodes:
|
| 127 |
+
temp,states=DFG_python(node,index_to_code,states)
|
| 128 |
+
DFG+=temp
|
| 129 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
| 130 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
| 131 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
| 132 |
+
temp=[]
|
| 133 |
+
for token1_index in left_tokens_index:
|
| 134 |
+
idx1,code1=index_to_code[token1_index]
|
| 135 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
| 136 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
| 137 |
+
states[code1]=[idx1]
|
| 138 |
+
DFG+=temp
|
| 139 |
+
if root_node.children[-1].type=="block":
|
| 140 |
+
temp,states=DFG_python(root_node.children[-1],index_to_code,states)
|
| 141 |
+
DFG+=temp
|
| 142 |
+
dic={}
|
| 143 |
+
for x in DFG:
|
| 144 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 145 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 146 |
+
else:
|
| 147 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 148 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 149 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 150 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 151 |
+
elif root_node.type in while_statement:
|
| 152 |
+
DFG=[]
|
| 153 |
+
for i in range(2):
|
| 154 |
+
for child in root_node.children:
|
| 155 |
+
temp,states=DFG_python(child,index_to_code,states)
|
| 156 |
+
DFG+=temp
|
| 157 |
+
dic={}
|
| 158 |
+
for x in DFG:
|
| 159 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 160 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 161 |
+
else:
|
| 162 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 163 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 164 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 165 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 166 |
+
else:
|
| 167 |
+
DFG=[]
|
| 168 |
+
for child in root_node.children:
|
| 169 |
+
if child.type in do_first_statement:
|
| 170 |
+
temp,states=DFG_python(child,index_to_code,states)
|
| 171 |
+
DFG+=temp
|
| 172 |
+
for child in root_node.children:
|
| 173 |
+
if child.type not in do_first_statement:
|
| 174 |
+
temp,states=DFG_python(child,index_to_code,states)
|
| 175 |
+
DFG+=temp
|
| 176 |
+
|
| 177 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def DFG_java(root_node,index_to_code,states):
|
| 181 |
+
assignment=['assignment_expression']
|
| 182 |
+
def_statement=['variable_declarator']
|
| 183 |
+
increment_statement=['update_expression']
|
| 184 |
+
if_statement=['if_statement','else']
|
| 185 |
+
for_statement=['for_statement']
|
| 186 |
+
enhanced_for_statement=['enhanced_for_statement']
|
| 187 |
+
while_statement=['while_statement']
|
| 188 |
+
do_first_statement=[]
|
| 189 |
+
states=states.copy()
|
| 190 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 191 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 192 |
+
if root_node.type==code:
|
| 193 |
+
return [],states
|
| 194 |
+
elif code in states:
|
| 195 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 196 |
+
else:
|
| 197 |
+
if root_node.type=='identifier':
|
| 198 |
+
states[code]=[idx]
|
| 199 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 200 |
+
elif root_node.type in def_statement:
|
| 201 |
+
name=root_node.child_by_field_name('name')
|
| 202 |
+
value=root_node.child_by_field_name('value')
|
| 203 |
+
DFG=[]
|
| 204 |
+
if value is None:
|
| 205 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 206 |
+
for index in indexs:
|
| 207 |
+
idx,code=index_to_code[index]
|
| 208 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 209 |
+
states[code]=[idx]
|
| 210 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 211 |
+
else:
|
| 212 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 213 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 214 |
+
temp,states=DFG_java(value,index_to_code,states)
|
| 215 |
+
DFG+=temp
|
| 216 |
+
for index1 in name_indexs:
|
| 217 |
+
idx1,code1=index_to_code[index1]
|
| 218 |
+
for index2 in value_indexs:
|
| 219 |
+
idx2,code2=index_to_code[index2]
|
| 220 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 221 |
+
states[code1]=[idx1]
|
| 222 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 223 |
+
elif root_node.type in assignment:
|
| 224 |
+
left_nodes=root_node.child_by_field_name('left')
|
| 225 |
+
right_nodes=root_node.child_by_field_name('right')
|
| 226 |
+
DFG=[]
|
| 227 |
+
temp,states=DFG_java(right_nodes,index_to_code,states)
|
| 228 |
+
DFG+=temp
|
| 229 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
| 230 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
| 231 |
+
for index1 in name_indexs:
|
| 232 |
+
idx1,code1=index_to_code[index1]
|
| 233 |
+
for index2 in value_indexs:
|
| 234 |
+
idx2,code2=index_to_code[index2]
|
| 235 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 236 |
+
states[code1]=[idx1]
|
| 237 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 238 |
+
elif root_node.type in increment_statement:
|
| 239 |
+
DFG=[]
|
| 240 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
| 241 |
+
for index1 in indexs:
|
| 242 |
+
idx1,code1=index_to_code[index1]
|
| 243 |
+
for index2 in indexs:
|
| 244 |
+
idx2,code2=index_to_code[index2]
|
| 245 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 246 |
+
states[code1]=[idx1]
|
| 247 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 248 |
+
elif root_node.type in if_statement:
|
| 249 |
+
DFG=[]
|
| 250 |
+
current_states=states.copy()
|
| 251 |
+
others_states=[]
|
| 252 |
+
flag=False
|
| 253 |
+
tag=False
|
| 254 |
+
if 'else' in root_node.type:
|
| 255 |
+
tag=True
|
| 256 |
+
for child in root_node.children:
|
| 257 |
+
if 'else' in child.type:
|
| 258 |
+
tag=True
|
| 259 |
+
if child.type not in if_statement and flag is False:
|
| 260 |
+
temp,current_states=DFG_java(child,index_to_code,current_states)
|
| 261 |
+
DFG+=temp
|
| 262 |
+
else:
|
| 263 |
+
flag=True
|
| 264 |
+
temp,new_states=DFG_java(child,index_to_code,states)
|
| 265 |
+
DFG+=temp
|
| 266 |
+
others_states.append(new_states)
|
| 267 |
+
others_states.append(current_states)
|
| 268 |
+
if tag is False:
|
| 269 |
+
others_states.append(states)
|
| 270 |
+
new_states={}
|
| 271 |
+
for dic in others_states:
|
| 272 |
+
for key in dic:
|
| 273 |
+
if key not in new_states:
|
| 274 |
+
new_states[key]=dic[key].copy()
|
| 275 |
+
else:
|
| 276 |
+
new_states[key]+=dic[key]
|
| 277 |
+
for key in new_states:
|
| 278 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 279 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 280 |
+
elif root_node.type in for_statement:
|
| 281 |
+
DFG=[]
|
| 282 |
+
for child in root_node.children:
|
| 283 |
+
temp,states=DFG_java(child,index_to_code,states)
|
| 284 |
+
DFG+=temp
|
| 285 |
+
flag=False
|
| 286 |
+
for child in root_node.children:
|
| 287 |
+
if flag:
|
| 288 |
+
temp,states=DFG_java(child,index_to_code,states)
|
| 289 |
+
DFG+=temp
|
| 290 |
+
elif child.type=="local_variable_declaration":
|
| 291 |
+
flag=True
|
| 292 |
+
dic={}
|
| 293 |
+
for x in DFG:
|
| 294 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 295 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 296 |
+
else:
|
| 297 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 298 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 299 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 300 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 301 |
+
elif root_node.type in enhanced_for_statement:
|
| 302 |
+
name=root_node.child_by_field_name('name')
|
| 303 |
+
value=root_node.child_by_field_name('value')
|
| 304 |
+
body=root_node.child_by_field_name('body')
|
| 305 |
+
DFG=[]
|
| 306 |
+
for i in range(2):
|
| 307 |
+
temp,states=DFG_java(value,index_to_code,states)
|
| 308 |
+
DFG+=temp
|
| 309 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 310 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 311 |
+
for index1 in name_indexs:
|
| 312 |
+
idx1,code1=index_to_code[index1]
|
| 313 |
+
for index2 in value_indexs:
|
| 314 |
+
idx2,code2=index_to_code[index2]
|
| 315 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 316 |
+
states[code1]=[idx1]
|
| 317 |
+
temp,states=DFG_java(body,index_to_code,states)
|
| 318 |
+
DFG+=temp
|
| 319 |
+
dic={}
|
| 320 |
+
for x in DFG:
|
| 321 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 322 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 323 |
+
else:
|
| 324 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 325 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 326 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 327 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 328 |
+
elif root_node.type in while_statement:
|
| 329 |
+
DFG=[]
|
| 330 |
+
for i in range(2):
|
| 331 |
+
for child in root_node.children:
|
| 332 |
+
temp,states=DFG_java(child,index_to_code,states)
|
| 333 |
+
DFG+=temp
|
| 334 |
+
dic={}
|
| 335 |
+
for x in DFG:
|
| 336 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 337 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 338 |
+
else:
|
| 339 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 340 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 341 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 342 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 343 |
+
else:
|
| 344 |
+
DFG=[]
|
| 345 |
+
for child in root_node.children:
|
| 346 |
+
if child.type in do_first_statement:
|
| 347 |
+
temp,states=DFG_java(child,index_to_code,states)
|
| 348 |
+
DFG+=temp
|
| 349 |
+
for child in root_node.children:
|
| 350 |
+
if child.type not in do_first_statement:
|
| 351 |
+
temp,states=DFG_java(child,index_to_code,states)
|
| 352 |
+
DFG+=temp
|
| 353 |
+
|
| 354 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 355 |
+
|
| 356 |
+
def DFG_csharp(root_node,index_to_code,states):
|
| 357 |
+
assignment=['assignment_expression']
|
| 358 |
+
def_statement=['variable_declarator']
|
| 359 |
+
increment_statement=['postfix_unary_expression']
|
| 360 |
+
if_statement=['if_statement','else']
|
| 361 |
+
for_statement=['for_statement']
|
| 362 |
+
enhanced_for_statement=['for_each_statement']
|
| 363 |
+
while_statement=['while_statement']
|
| 364 |
+
do_first_statement=[]
|
| 365 |
+
states=states.copy()
|
| 366 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 367 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 368 |
+
if root_node.type==code:
|
| 369 |
+
return [],states
|
| 370 |
+
elif code in states:
|
| 371 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 372 |
+
else:
|
| 373 |
+
if root_node.type=='identifier':
|
| 374 |
+
states[code]=[idx]
|
| 375 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 376 |
+
elif root_node.type in def_statement:
|
| 377 |
+
if len(root_node.children)==2:
|
| 378 |
+
name=root_node.children[0]
|
| 379 |
+
value=root_node.children[1]
|
| 380 |
+
else:
|
| 381 |
+
name=root_node.children[0]
|
| 382 |
+
value=None
|
| 383 |
+
DFG=[]
|
| 384 |
+
if value is None:
|
| 385 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 386 |
+
for index in indexs:
|
| 387 |
+
idx,code=index_to_code[index]
|
| 388 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 389 |
+
states[code]=[idx]
|
| 390 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 391 |
+
else:
|
| 392 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 393 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 394 |
+
temp,states=DFG_csharp(value,index_to_code,states)
|
| 395 |
+
DFG+=temp
|
| 396 |
+
for index1 in name_indexs:
|
| 397 |
+
idx1,code1=index_to_code[index1]
|
| 398 |
+
for index2 in value_indexs:
|
| 399 |
+
idx2,code2=index_to_code[index2]
|
| 400 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 401 |
+
states[code1]=[idx1]
|
| 402 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 403 |
+
elif root_node.type in assignment:
|
| 404 |
+
left_nodes=root_node.child_by_field_name('left')
|
| 405 |
+
right_nodes=root_node.child_by_field_name('right')
|
| 406 |
+
DFG=[]
|
| 407 |
+
temp,states=DFG_csharp(right_nodes,index_to_code,states)
|
| 408 |
+
DFG+=temp
|
| 409 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
| 410 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
| 411 |
+
for index1 in name_indexs:
|
| 412 |
+
idx1,code1=index_to_code[index1]
|
| 413 |
+
for index2 in value_indexs:
|
| 414 |
+
idx2,code2=index_to_code[index2]
|
| 415 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 416 |
+
states[code1]=[idx1]
|
| 417 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 418 |
+
elif root_node.type in increment_statement:
|
| 419 |
+
DFG=[]
|
| 420 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
| 421 |
+
for index1 in indexs:
|
| 422 |
+
idx1,code1=index_to_code[index1]
|
| 423 |
+
for index2 in indexs:
|
| 424 |
+
idx2,code2=index_to_code[index2]
|
| 425 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 426 |
+
states[code1]=[idx1]
|
| 427 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 428 |
+
elif root_node.type in if_statement:
|
| 429 |
+
DFG=[]
|
| 430 |
+
current_states=states.copy()
|
| 431 |
+
others_states=[]
|
| 432 |
+
flag=False
|
| 433 |
+
tag=False
|
| 434 |
+
if 'else' in root_node.type:
|
| 435 |
+
tag=True
|
| 436 |
+
for child in root_node.children:
|
| 437 |
+
if 'else' in child.type:
|
| 438 |
+
tag=True
|
| 439 |
+
if child.type not in if_statement and flag is False:
|
| 440 |
+
temp,current_states=DFG_csharp(child,index_to_code,current_states)
|
| 441 |
+
DFG+=temp
|
| 442 |
+
else:
|
| 443 |
+
flag=True
|
| 444 |
+
temp,new_states=DFG_csharp(child,index_to_code,states)
|
| 445 |
+
DFG+=temp
|
| 446 |
+
others_states.append(new_states)
|
| 447 |
+
others_states.append(current_states)
|
| 448 |
+
if tag is False:
|
| 449 |
+
others_states.append(states)
|
| 450 |
+
new_states={}
|
| 451 |
+
for dic in others_states:
|
| 452 |
+
for key in dic:
|
| 453 |
+
if key not in new_states:
|
| 454 |
+
new_states[key]=dic[key].copy()
|
| 455 |
+
else:
|
| 456 |
+
new_states[key]+=dic[key]
|
| 457 |
+
for key in new_states:
|
| 458 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 459 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 460 |
+
elif root_node.type in for_statement:
|
| 461 |
+
DFG=[]
|
| 462 |
+
for child in root_node.children:
|
| 463 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
| 464 |
+
DFG+=temp
|
| 465 |
+
flag=False
|
| 466 |
+
for child in root_node.children:
|
| 467 |
+
if flag:
|
| 468 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
| 469 |
+
DFG+=temp
|
| 470 |
+
elif child.type=="local_variable_declaration":
|
| 471 |
+
flag=True
|
| 472 |
+
dic={}
|
| 473 |
+
for x in DFG:
|
| 474 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 475 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 476 |
+
else:
|
| 477 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 478 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 479 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 480 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 481 |
+
elif root_node.type in enhanced_for_statement:
|
| 482 |
+
name=root_node.child_by_field_name('left')
|
| 483 |
+
value=root_node.child_by_field_name('right')
|
| 484 |
+
body=root_node.child_by_field_name('body')
|
| 485 |
+
DFG=[]
|
| 486 |
+
for i in range(2):
|
| 487 |
+
temp,states=DFG_csharp(value,index_to_code,states)
|
| 488 |
+
DFG+=temp
|
| 489 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 490 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 491 |
+
for index1 in name_indexs:
|
| 492 |
+
idx1,code1=index_to_code[index1]
|
| 493 |
+
for index2 in value_indexs:
|
| 494 |
+
idx2,code2=index_to_code[index2]
|
| 495 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 496 |
+
states[code1]=[idx1]
|
| 497 |
+
temp,states=DFG_csharp(body,index_to_code,states)
|
| 498 |
+
DFG+=temp
|
| 499 |
+
dic={}
|
| 500 |
+
for x in DFG:
|
| 501 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 502 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 503 |
+
else:
|
| 504 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 505 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 506 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 507 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 508 |
+
elif root_node.type in while_statement:
|
| 509 |
+
DFG=[]
|
| 510 |
+
for i in range(2):
|
| 511 |
+
for child in root_node.children:
|
| 512 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
| 513 |
+
DFG+=temp
|
| 514 |
+
dic={}
|
| 515 |
+
for x in DFG:
|
| 516 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 517 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 518 |
+
else:
|
| 519 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 520 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 521 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 522 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 523 |
+
else:
|
| 524 |
+
DFG=[]
|
| 525 |
+
for child in root_node.children:
|
| 526 |
+
if child.type in do_first_statement:
|
| 527 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
| 528 |
+
DFG+=temp
|
| 529 |
+
for child in root_node.children:
|
| 530 |
+
if child.type not in do_first_statement:
|
| 531 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
| 532 |
+
DFG+=temp
|
| 533 |
+
|
| 534 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def DFG_ruby(root_node,index_to_code,states):
|
| 540 |
+
assignment=['assignment','operator_assignment']
|
| 541 |
+
if_statement=['if','elsif','else','unless','when']
|
| 542 |
+
for_statement=['for']
|
| 543 |
+
while_statement=['while_modifier','until']
|
| 544 |
+
do_first_statement=[]
|
| 545 |
+
def_statement=['keyword_parameter']
|
| 546 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 547 |
+
states=states.copy()
|
| 548 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 549 |
+
if root_node.type==code:
|
| 550 |
+
return [],states
|
| 551 |
+
elif code in states:
|
| 552 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 553 |
+
else:
|
| 554 |
+
if root_node.type=='identifier':
|
| 555 |
+
states[code]=[idx]
|
| 556 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 557 |
+
elif root_node.type in def_statement:
|
| 558 |
+
name=root_node.child_by_field_name('name')
|
| 559 |
+
value=root_node.child_by_field_name('value')
|
| 560 |
+
DFG=[]
|
| 561 |
+
if value is None:
|
| 562 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 563 |
+
for index in indexs:
|
| 564 |
+
idx,code=index_to_code[index]
|
| 565 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 566 |
+
states[code]=[idx]
|
| 567 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 568 |
+
else:
|
| 569 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 570 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 571 |
+
temp,states=DFG_ruby(value,index_to_code,states)
|
| 572 |
+
DFG+=temp
|
| 573 |
+
for index1 in name_indexs:
|
| 574 |
+
idx1,code1=index_to_code[index1]
|
| 575 |
+
for index2 in value_indexs:
|
| 576 |
+
idx2,code2=index_to_code[index2]
|
| 577 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 578 |
+
states[code1]=[idx1]
|
| 579 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 580 |
+
elif root_node.type in assignment:
|
| 581 |
+
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
| 582 |
+
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
| 583 |
+
if len(right_nodes)!=len(left_nodes):
|
| 584 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 585 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
| 586 |
+
if len(left_nodes)==0:
|
| 587 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
| 588 |
+
if len(right_nodes)==0:
|
| 589 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
| 590 |
+
if root_node.type=="operator_assignment":
|
| 591 |
+
left_nodes=[root_node.children[0]]
|
| 592 |
+
right_nodes=[root_node.children[-1]]
|
| 593 |
+
|
| 594 |
+
DFG=[]
|
| 595 |
+
for node in right_nodes:
|
| 596 |
+
temp,states=DFG_ruby(node,index_to_code,states)
|
| 597 |
+
DFG+=temp
|
| 598 |
+
|
| 599 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
| 600 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
| 601 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
| 602 |
+
temp=[]
|
| 603 |
+
for token1_index in left_tokens_index:
|
| 604 |
+
idx1,code1=index_to_code[token1_index]
|
| 605 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
| 606 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
| 607 |
+
states[code1]=[idx1]
|
| 608 |
+
DFG+=temp
|
| 609 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 610 |
+
elif root_node.type in if_statement:
|
| 611 |
+
DFG=[]
|
| 612 |
+
current_states=states.copy()
|
| 613 |
+
others_states=[]
|
| 614 |
+
tag=False
|
| 615 |
+
if 'else' in root_node.type:
|
| 616 |
+
tag=True
|
| 617 |
+
for child in root_node.children:
|
| 618 |
+
if 'else' in child.type:
|
| 619 |
+
tag=True
|
| 620 |
+
if child.type not in if_statement:
|
| 621 |
+
temp,current_states=DFG_ruby(child,index_to_code,current_states)
|
| 622 |
+
DFG+=temp
|
| 623 |
+
else:
|
| 624 |
+
temp,new_states=DFG_ruby(child,index_to_code,states)
|
| 625 |
+
DFG+=temp
|
| 626 |
+
others_states.append(new_states)
|
| 627 |
+
others_states.append(current_states)
|
| 628 |
+
if tag is False:
|
| 629 |
+
others_states.append(states)
|
| 630 |
+
new_states={}
|
| 631 |
+
for dic in others_states:
|
| 632 |
+
for key in dic:
|
| 633 |
+
if key not in new_states:
|
| 634 |
+
new_states[key]=dic[key].copy()
|
| 635 |
+
else:
|
| 636 |
+
new_states[key]+=dic[key]
|
| 637 |
+
for key in new_states:
|
| 638 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 639 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 640 |
+
elif root_node.type in for_statement:
|
| 641 |
+
DFG=[]
|
| 642 |
+
for i in range(2):
|
| 643 |
+
left_nodes=[root_node.child_by_field_name('pattern')]
|
| 644 |
+
right_nodes=[root_node.child_by_field_name('value')]
|
| 645 |
+
assert len(right_nodes)==len(left_nodes)
|
| 646 |
+
for node in right_nodes:
|
| 647 |
+
temp,states=DFG_ruby(node,index_to_code,states)
|
| 648 |
+
DFG+=temp
|
| 649 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
| 650 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
| 651 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
| 652 |
+
temp=[]
|
| 653 |
+
for token1_index in left_tokens_index:
|
| 654 |
+
idx1,code1=index_to_code[token1_index]
|
| 655 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
| 656 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
| 657 |
+
states[code1]=[idx1]
|
| 658 |
+
DFG+=temp
|
| 659 |
+
temp,states=DFG_ruby(root_node.child_by_field_name('body'),index_to_code,states)
|
| 660 |
+
DFG+=temp
|
| 661 |
+
dic={}
|
| 662 |
+
for x in DFG:
|
| 663 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 664 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 665 |
+
else:
|
| 666 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 667 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 668 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 669 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 670 |
+
elif root_node.type in while_statement:
|
| 671 |
+
DFG=[]
|
| 672 |
+
for i in range(2):
|
| 673 |
+
for child in root_node.children:
|
| 674 |
+
temp,states=DFG_ruby(child,index_to_code,states)
|
| 675 |
+
DFG+=temp
|
| 676 |
+
dic={}
|
| 677 |
+
for x in DFG:
|
| 678 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 679 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 680 |
+
else:
|
| 681 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 682 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 683 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 684 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 685 |
+
else:
|
| 686 |
+
DFG=[]
|
| 687 |
+
for child in root_node.children:
|
| 688 |
+
if child.type in do_first_statement:
|
| 689 |
+
temp,states=DFG_ruby(child,index_to_code,states)
|
| 690 |
+
DFG+=temp
|
| 691 |
+
for child in root_node.children:
|
| 692 |
+
if child.type not in do_first_statement:
|
| 693 |
+
temp,states=DFG_ruby(child,index_to_code,states)
|
| 694 |
+
DFG+=temp
|
| 695 |
+
|
| 696 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 697 |
+
|
| 698 |
+
def DFG_go(root_node,index_to_code,states):
|
| 699 |
+
assignment=['assignment_statement',]
|
| 700 |
+
def_statement=['var_spec']
|
| 701 |
+
increment_statement=['inc_statement']
|
| 702 |
+
if_statement=['if_statement','else']
|
| 703 |
+
for_statement=['for_statement']
|
| 704 |
+
enhanced_for_statement=[]
|
| 705 |
+
while_statement=[]
|
| 706 |
+
do_first_statement=[]
|
| 707 |
+
states=states.copy()
|
| 708 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 709 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 710 |
+
if root_node.type==code:
|
| 711 |
+
return [],states
|
| 712 |
+
elif code in states:
|
| 713 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 714 |
+
else:
|
| 715 |
+
if root_node.type=='identifier':
|
| 716 |
+
states[code]=[idx]
|
| 717 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 718 |
+
elif root_node.type in def_statement:
|
| 719 |
+
name=root_node.child_by_field_name('name')
|
| 720 |
+
value=root_node.child_by_field_name('value')
|
| 721 |
+
DFG=[]
|
| 722 |
+
if value is None:
|
| 723 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 724 |
+
for index in indexs:
|
| 725 |
+
idx,code=index_to_code[index]
|
| 726 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 727 |
+
states[code]=[idx]
|
| 728 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 729 |
+
else:
|
| 730 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 731 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 732 |
+
temp,states=DFG_go(value,index_to_code,states)
|
| 733 |
+
DFG+=temp
|
| 734 |
+
for index1 in name_indexs:
|
| 735 |
+
idx1,code1=index_to_code[index1]
|
| 736 |
+
for index2 in value_indexs:
|
| 737 |
+
idx2,code2=index_to_code[index2]
|
| 738 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 739 |
+
states[code1]=[idx1]
|
| 740 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 741 |
+
elif root_node.type in assignment:
|
| 742 |
+
left_nodes=root_node.child_by_field_name('left')
|
| 743 |
+
right_nodes=root_node.child_by_field_name('right')
|
| 744 |
+
DFG=[]
|
| 745 |
+
temp,states=DFG_go(right_nodes,index_to_code,states)
|
| 746 |
+
DFG+=temp
|
| 747 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
| 748 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
| 749 |
+
for index1 in name_indexs:
|
| 750 |
+
idx1,code1=index_to_code[index1]
|
| 751 |
+
for index2 in value_indexs:
|
| 752 |
+
idx2,code2=index_to_code[index2]
|
| 753 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 754 |
+
states[code1]=[idx1]
|
| 755 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 756 |
+
elif root_node.type in increment_statement:
|
| 757 |
+
DFG=[]
|
| 758 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
| 759 |
+
for index1 in indexs:
|
| 760 |
+
idx1,code1=index_to_code[index1]
|
| 761 |
+
for index2 in indexs:
|
| 762 |
+
idx2,code2=index_to_code[index2]
|
| 763 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 764 |
+
states[code1]=[idx1]
|
| 765 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 766 |
+
elif root_node.type in if_statement:
|
| 767 |
+
DFG=[]
|
| 768 |
+
current_states=states.copy()
|
| 769 |
+
others_states=[]
|
| 770 |
+
flag=False
|
| 771 |
+
tag=False
|
| 772 |
+
if 'else' in root_node.type:
|
| 773 |
+
tag=True
|
| 774 |
+
for child in root_node.children:
|
| 775 |
+
if 'else' in child.type:
|
| 776 |
+
tag=True
|
| 777 |
+
if child.type not in if_statement and flag is False:
|
| 778 |
+
temp,current_states=DFG_go(child,index_to_code,current_states)
|
| 779 |
+
DFG+=temp
|
| 780 |
+
else:
|
| 781 |
+
flag=True
|
| 782 |
+
temp,new_states=DFG_go(child,index_to_code,states)
|
| 783 |
+
DFG+=temp
|
| 784 |
+
others_states.append(new_states)
|
| 785 |
+
others_states.append(current_states)
|
| 786 |
+
if tag is False:
|
| 787 |
+
others_states.append(states)
|
| 788 |
+
new_states={}
|
| 789 |
+
for dic in others_states:
|
| 790 |
+
for key in dic:
|
| 791 |
+
if key not in new_states:
|
| 792 |
+
new_states[key]=dic[key].copy()
|
| 793 |
+
else:
|
| 794 |
+
new_states[key]+=dic[key]
|
| 795 |
+
for key in states:
|
| 796 |
+
if key not in new_states:
|
| 797 |
+
new_states[key]=states[key]
|
| 798 |
+
else:
|
| 799 |
+
new_states[key]+=states[key]
|
| 800 |
+
for key in new_states:
|
| 801 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 802 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 803 |
+
elif root_node.type in for_statement:
|
| 804 |
+
DFG=[]
|
| 805 |
+
for child in root_node.children:
|
| 806 |
+
temp,states=DFG_go(child,index_to_code,states)
|
| 807 |
+
DFG+=temp
|
| 808 |
+
flag=False
|
| 809 |
+
for child in root_node.children:
|
| 810 |
+
if flag:
|
| 811 |
+
temp,states=DFG_go(child,index_to_code,states)
|
| 812 |
+
DFG+=temp
|
| 813 |
+
elif child.type=="for_clause":
|
| 814 |
+
if child.child_by_field_name('update') is not None:
|
| 815 |
+
temp,states=DFG_go(child.child_by_field_name('update'),index_to_code,states)
|
| 816 |
+
DFG+=temp
|
| 817 |
+
flag=True
|
| 818 |
+
dic={}
|
| 819 |
+
for x in DFG:
|
| 820 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 821 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 822 |
+
else:
|
| 823 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 824 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 825 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 826 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 827 |
+
else:
|
| 828 |
+
DFG=[]
|
| 829 |
+
for child in root_node.children:
|
| 830 |
+
if child.type in do_first_statement:
|
| 831 |
+
temp,states=DFG_go(child,index_to_code,states)
|
| 832 |
+
DFG+=temp
|
| 833 |
+
for child in root_node.children:
|
| 834 |
+
if child.type not in do_first_statement:
|
| 835 |
+
temp,states=DFG_go(child,index_to_code,states)
|
| 836 |
+
DFG+=temp
|
| 837 |
+
|
| 838 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 839 |
+
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
def DFG_php(root_node,index_to_code,states):
|
| 844 |
+
assignment=['assignment_expression','augmented_assignment_expression']
|
| 845 |
+
def_statement=['simple_parameter']
|
| 846 |
+
increment_statement=['update_expression']
|
| 847 |
+
if_statement=['if_statement','else_clause']
|
| 848 |
+
for_statement=['for_statement']
|
| 849 |
+
enhanced_for_statement=['foreach_statement']
|
| 850 |
+
while_statement=['while_statement']
|
| 851 |
+
do_first_statement=[]
|
| 852 |
+
states=states.copy()
|
| 853 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 854 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 855 |
+
if root_node.type==code:
|
| 856 |
+
return [],states
|
| 857 |
+
elif code in states:
|
| 858 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 859 |
+
else:
|
| 860 |
+
if root_node.type=='identifier':
|
| 861 |
+
states[code]=[idx]
|
| 862 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 863 |
+
elif root_node.type in def_statement:
|
| 864 |
+
name=root_node.child_by_field_name('name')
|
| 865 |
+
value=root_node.child_by_field_name('default_value')
|
| 866 |
+
DFG=[]
|
| 867 |
+
if value is None:
|
| 868 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 869 |
+
for index in indexs:
|
| 870 |
+
idx,code=index_to_code[index]
|
| 871 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 872 |
+
states[code]=[idx]
|
| 873 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 874 |
+
else:
|
| 875 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 876 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 877 |
+
temp,states=DFG_php(value,index_to_code,states)
|
| 878 |
+
DFG+=temp
|
| 879 |
+
for index1 in name_indexs:
|
| 880 |
+
idx1,code1=index_to_code[index1]
|
| 881 |
+
for index2 in value_indexs:
|
| 882 |
+
idx2,code2=index_to_code[index2]
|
| 883 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 884 |
+
states[code1]=[idx1]
|
| 885 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 886 |
+
elif root_node.type in assignment:
|
| 887 |
+
left_nodes=root_node.child_by_field_name('left')
|
| 888 |
+
right_nodes=root_node.child_by_field_name('right')
|
| 889 |
+
DFG=[]
|
| 890 |
+
temp,states=DFG_php(right_nodes,index_to_code,states)
|
| 891 |
+
DFG+=temp
|
| 892 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
| 893 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
| 894 |
+
for index1 in name_indexs:
|
| 895 |
+
idx1,code1=index_to_code[index1]
|
| 896 |
+
for index2 in value_indexs:
|
| 897 |
+
idx2,code2=index_to_code[index2]
|
| 898 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 899 |
+
states[code1]=[idx1]
|
| 900 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 901 |
+
elif root_node.type in increment_statement:
|
| 902 |
+
DFG=[]
|
| 903 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
| 904 |
+
for index1 in indexs:
|
| 905 |
+
idx1,code1=index_to_code[index1]
|
| 906 |
+
for index2 in indexs:
|
| 907 |
+
idx2,code2=index_to_code[index2]
|
| 908 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 909 |
+
states[code1]=[idx1]
|
| 910 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 911 |
+
elif root_node.type in if_statement:
|
| 912 |
+
DFG=[]
|
| 913 |
+
current_states=states.copy()
|
| 914 |
+
others_states=[]
|
| 915 |
+
flag=False
|
| 916 |
+
tag=False
|
| 917 |
+
if 'else' in root_node.type:
|
| 918 |
+
tag=True
|
| 919 |
+
for child in root_node.children:
|
| 920 |
+
if 'else' in child.type:
|
| 921 |
+
tag=True
|
| 922 |
+
if child.type not in if_statement and flag is False:
|
| 923 |
+
temp,current_states=DFG_php(child,index_to_code,current_states)
|
| 924 |
+
DFG+=temp
|
| 925 |
+
else:
|
| 926 |
+
flag=True
|
| 927 |
+
temp,new_states=DFG_php(child,index_to_code,states)
|
| 928 |
+
DFG+=temp
|
| 929 |
+
others_states.append(new_states)
|
| 930 |
+
others_states.append(current_states)
|
| 931 |
+
new_states={}
|
| 932 |
+
for dic in others_states:
|
| 933 |
+
for key in dic:
|
| 934 |
+
if key not in new_states:
|
| 935 |
+
new_states[key]=dic[key].copy()
|
| 936 |
+
else:
|
| 937 |
+
new_states[key]+=dic[key]
|
| 938 |
+
for key in states:
|
| 939 |
+
if key not in new_states:
|
| 940 |
+
new_states[key]=states[key]
|
| 941 |
+
else:
|
| 942 |
+
new_states[key]+=states[key]
|
| 943 |
+
for key in new_states:
|
| 944 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 945 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 946 |
+
elif root_node.type in for_statement:
|
| 947 |
+
DFG=[]
|
| 948 |
+
for child in root_node.children:
|
| 949 |
+
temp,states=DFG_php(child,index_to_code,states)
|
| 950 |
+
DFG+=temp
|
| 951 |
+
flag=False
|
| 952 |
+
for child in root_node.children:
|
| 953 |
+
if flag:
|
| 954 |
+
temp,states=DFG_php(child,index_to_code,states)
|
| 955 |
+
DFG+=temp
|
| 956 |
+
elif child.type=="assignment_expression":
|
| 957 |
+
flag=True
|
| 958 |
+
dic={}
|
| 959 |
+
for x in DFG:
|
| 960 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 961 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 962 |
+
else:
|
| 963 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 964 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 965 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 966 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 967 |
+
elif root_node.type in enhanced_for_statement:
|
| 968 |
+
name=None
|
| 969 |
+
value=None
|
| 970 |
+
for child in root_node.children:
|
| 971 |
+
if child.type=='variable_name' and value is None:
|
| 972 |
+
value=child
|
| 973 |
+
elif child.type=='variable_name' and name is None:
|
| 974 |
+
name=child
|
| 975 |
+
break
|
| 976 |
+
body=root_node.child_by_field_name('body')
|
| 977 |
+
DFG=[]
|
| 978 |
+
for i in range(2):
|
| 979 |
+
temp,states=DFG_php(value,index_to_code,states)
|
| 980 |
+
DFG+=temp
|
| 981 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 982 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 983 |
+
for index1 in name_indexs:
|
| 984 |
+
idx1,code1=index_to_code[index1]
|
| 985 |
+
for index2 in value_indexs:
|
| 986 |
+
idx2,code2=index_to_code[index2]
|
| 987 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 988 |
+
states[code1]=[idx1]
|
| 989 |
+
temp,states=DFG_php(body,index_to_code,states)
|
| 990 |
+
DFG+=temp
|
| 991 |
+
dic={}
|
| 992 |
+
for x in DFG:
|
| 993 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 994 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 995 |
+
else:
|
| 996 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 997 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 998 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 999 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1000 |
+
elif root_node.type in while_statement:
|
| 1001 |
+
DFG=[]
|
| 1002 |
+
for i in range(2):
|
| 1003 |
+
for child in root_node.children:
|
| 1004 |
+
temp,states=DFG_php(child,index_to_code,states)
|
| 1005 |
+
DFG+=temp
|
| 1006 |
+
dic={}
|
| 1007 |
+
for x in DFG:
|
| 1008 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 1009 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 1010 |
+
else:
|
| 1011 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 1012 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 1013 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 1014 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1015 |
+
else:
|
| 1016 |
+
DFG=[]
|
| 1017 |
+
for child in root_node.children:
|
| 1018 |
+
if child.type in do_first_statement:
|
| 1019 |
+
temp,states=DFG_php(child,index_to_code,states)
|
| 1020 |
+
DFG+=temp
|
| 1021 |
+
for child in root_node.children:
|
| 1022 |
+
if child.type not in do_first_statement:
|
| 1023 |
+
temp,states=DFG_php(child,index_to_code,states)
|
| 1024 |
+
DFG+=temp
|
| 1025 |
+
|
| 1026 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
def DFG_javascript(root_node,index_to_code,states):
|
| 1030 |
+
assignment=['assignment_pattern','augmented_assignment_expression']
|
| 1031 |
+
def_statement=['variable_declarator']
|
| 1032 |
+
increment_statement=['update_expression']
|
| 1033 |
+
if_statement=['if_statement','else']
|
| 1034 |
+
for_statement=['for_statement']
|
| 1035 |
+
enhanced_for_statement=[]
|
| 1036 |
+
while_statement=['while_statement']
|
| 1037 |
+
do_first_statement=[]
|
| 1038 |
+
states=states.copy()
|
| 1039 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 1040 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
| 1041 |
+
if root_node.type==code:
|
| 1042 |
+
return [],states
|
| 1043 |
+
elif code in states:
|
| 1044 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
| 1045 |
+
else:
|
| 1046 |
+
if root_node.type=='identifier':
|
| 1047 |
+
states[code]=[idx]
|
| 1048 |
+
return [(code,idx,'comesFrom',[],[])],states
|
| 1049 |
+
elif root_node.type in def_statement:
|
| 1050 |
+
name=root_node.child_by_field_name('name')
|
| 1051 |
+
value=root_node.child_by_field_name('value')
|
| 1052 |
+
DFG=[]
|
| 1053 |
+
if value is None:
|
| 1054 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
| 1055 |
+
for index in indexs:
|
| 1056 |
+
idx,code=index_to_code[index]
|
| 1057 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
| 1058 |
+
states[code]=[idx]
|
| 1059 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1060 |
+
else:
|
| 1061 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
| 1062 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
| 1063 |
+
temp,states=DFG_javascript(value,index_to_code,states)
|
| 1064 |
+
DFG+=temp
|
| 1065 |
+
for index1 in name_indexs:
|
| 1066 |
+
idx1,code1=index_to_code[index1]
|
| 1067 |
+
for index2 in value_indexs:
|
| 1068 |
+
idx2,code2=index_to_code[index2]
|
| 1069 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
| 1070 |
+
states[code1]=[idx1]
|
| 1071 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1072 |
+
elif root_node.type in assignment:
|
| 1073 |
+
left_nodes=root_node.child_by_field_name('left')
|
| 1074 |
+
right_nodes=root_node.child_by_field_name('right')
|
| 1075 |
+
DFG=[]
|
| 1076 |
+
temp,states=DFG_javascript(right_nodes,index_to_code,states)
|
| 1077 |
+
DFG+=temp
|
| 1078 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
| 1079 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
| 1080 |
+
for index1 in name_indexs:
|
| 1081 |
+
idx1,code1=index_to_code[index1]
|
| 1082 |
+
for index2 in value_indexs:
|
| 1083 |
+
idx2,code2=index_to_code[index2]
|
| 1084 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 1085 |
+
states[code1]=[idx1]
|
| 1086 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1087 |
+
elif root_node.type in increment_statement:
|
| 1088 |
+
DFG=[]
|
| 1089 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
| 1090 |
+
for index1 in indexs:
|
| 1091 |
+
idx1,code1=index_to_code[index1]
|
| 1092 |
+
for index2 in indexs:
|
| 1093 |
+
idx2,code2=index_to_code[index2]
|
| 1094 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
| 1095 |
+
states[code1]=[idx1]
|
| 1096 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1097 |
+
elif root_node.type in if_statement:
|
| 1098 |
+
DFG=[]
|
| 1099 |
+
current_states=states.copy()
|
| 1100 |
+
others_states=[]
|
| 1101 |
+
flag=False
|
| 1102 |
+
tag=False
|
| 1103 |
+
if 'else' in root_node.type:
|
| 1104 |
+
tag=True
|
| 1105 |
+
for child in root_node.children:
|
| 1106 |
+
if 'else' in child.type:
|
| 1107 |
+
tag=True
|
| 1108 |
+
if child.type not in if_statement and flag is False:
|
| 1109 |
+
temp,current_states=DFG_javascript(child,index_to_code,current_states)
|
| 1110 |
+
DFG+=temp
|
| 1111 |
+
else:
|
| 1112 |
+
flag=True
|
| 1113 |
+
temp,new_states=DFG_javascript(child,index_to_code,states)
|
| 1114 |
+
DFG+=temp
|
| 1115 |
+
others_states.append(new_states)
|
| 1116 |
+
others_states.append(current_states)
|
| 1117 |
+
if tag is False:
|
| 1118 |
+
others_states.append(states)
|
| 1119 |
+
new_states={}
|
| 1120 |
+
for dic in others_states:
|
| 1121 |
+
for key in dic:
|
| 1122 |
+
if key not in new_states:
|
| 1123 |
+
new_states[key]=dic[key].copy()
|
| 1124 |
+
else:
|
| 1125 |
+
new_states[key]+=dic[key]
|
| 1126 |
+
for key in states:
|
| 1127 |
+
if key not in new_states:
|
| 1128 |
+
new_states[key]=states[key]
|
| 1129 |
+
else:
|
| 1130 |
+
new_states[key]+=states[key]
|
| 1131 |
+
for key in new_states:
|
| 1132 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
| 1133 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
| 1134 |
+
elif root_node.type in for_statement:
|
| 1135 |
+
DFG=[]
|
| 1136 |
+
for child in root_node.children:
|
| 1137 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
| 1138 |
+
DFG+=temp
|
| 1139 |
+
flag=False
|
| 1140 |
+
for child in root_node.children:
|
| 1141 |
+
if flag:
|
| 1142 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
| 1143 |
+
DFG+=temp
|
| 1144 |
+
elif child.type=="variable_declaration":
|
| 1145 |
+
flag=True
|
| 1146 |
+
dic={}
|
| 1147 |
+
for x in DFG:
|
| 1148 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 1149 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 1150 |
+
else:
|
| 1151 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 1152 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 1153 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 1154 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1155 |
+
elif root_node.type in while_statement:
|
| 1156 |
+
DFG=[]
|
| 1157 |
+
for i in range(2):
|
| 1158 |
+
for child in root_node.children:
|
| 1159 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
| 1160 |
+
DFG+=temp
|
| 1161 |
+
dic={}
|
| 1162 |
+
for x in DFG:
|
| 1163 |
+
if (x[0],x[1],x[2]) not in dic:
|
| 1164 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
| 1165 |
+
else:
|
| 1166 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
| 1167 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
| 1168 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
| 1169 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1170 |
+
else:
|
| 1171 |
+
DFG=[]
|
| 1172 |
+
for child in root_node.children:
|
| 1173 |
+
if child.type in do_first_statement:
|
| 1174 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
| 1175 |
+
DFG+=temp
|
| 1176 |
+
for child in root_node.children:
|
| 1177 |
+
if child.type not in do_first_statement:
|
| 1178 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
| 1179 |
+
DFG+=temp
|
| 1180 |
+
|
| 1181 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
| 1182 |
+
|
| 1183 |
+
|
| 1184 |
+
|
CodeBLEU/parser/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
from .utils import (remove_comments_and_docstrings,
|
| 5 |
+
tree_to_token_index,
|
| 6 |
+
index_to_code_token,
|
| 7 |
+
tree_to_variable_index)
|
| 8 |
+
from .DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
CodeBLEU/parser/build.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
from tree_sitter import Language, Parser
|
| 5 |
+
|
| 6 |
+
Language.build_library(
|
| 7 |
+
# Store the library in the `build` directory
|
| 8 |
+
'my-languages.so',
|
| 9 |
+
|
| 10 |
+
# Include one or more languages
|
| 11 |
+
[
|
| 12 |
+
'tree-sitter-go',
|
| 13 |
+
'tree-sitter-javascript',
|
| 14 |
+
'tree-sitter-python',
|
| 15 |
+
'tree-sitter-php',
|
| 16 |
+
'tree-sitter-java',
|
| 17 |
+
'tree-sitter-ruby',
|
| 18 |
+
'tree-sitter-c-sharp',
|
| 19 |
+
]
|
| 20 |
+
)
|
| 21 |
+
|
CodeBLEU/parser/build.sh
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git clone https://github.com/tree-sitter/tree-sitter-go
|
| 2 |
+
git clone https://github.com/tree-sitter/tree-sitter-javascript
|
| 3 |
+
git clone https://github.com/tree-sitter/tree-sitter-python
|
| 4 |
+
git clone https://github.com/tree-sitter/tree-sitter-ruby
|
| 5 |
+
git clone https://github.com/tree-sitter/tree-sitter-php
|
| 6 |
+
git clone https://github.com/tree-sitter/tree-sitter-java
|
| 7 |
+
git clone https://github.com/tree-sitter/tree-sitter-c-sharp
|
| 8 |
+
python build.py
|
CodeBLEU/parser/my-languages.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66d01dcb2f38f3ff418839a10b856d4a5e2ef38f472c21ad7c6fb4bd14fc307d
|
| 3 |
+
size 3000336
|
CodeBLEU/parser/utils.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
import re
|
| 5 |
+
from io import StringIO
|
| 6 |
+
import tokenize
|
| 7 |
+
def remove_comments_and_docstrings(source,lang):
|
| 8 |
+
if lang in ['python']:
|
| 9 |
+
"""
|
| 10 |
+
Returns 'source' minus comments and docstrings.
|
| 11 |
+
"""
|
| 12 |
+
io_obj = StringIO(source)
|
| 13 |
+
out = ""
|
| 14 |
+
prev_toktype = tokenize.INDENT
|
| 15 |
+
last_lineno = -1
|
| 16 |
+
last_col = 0
|
| 17 |
+
for tok in tokenize.generate_tokens(io_obj.readline):
|
| 18 |
+
token_type = tok[0]
|
| 19 |
+
token_string = tok[1]
|
| 20 |
+
start_line, start_col = tok[2]
|
| 21 |
+
end_line, end_col = tok[3]
|
| 22 |
+
ltext = tok[4]
|
| 23 |
+
if start_line > last_lineno:
|
| 24 |
+
last_col = 0
|
| 25 |
+
if start_col > last_col:
|
| 26 |
+
out += (" " * (start_col - last_col))
|
| 27 |
+
# Remove comments:
|
| 28 |
+
if token_type == tokenize.COMMENT:
|
| 29 |
+
pass
|
| 30 |
+
# This series of conditionals removes docstrings:
|
| 31 |
+
elif token_type == tokenize.STRING:
|
| 32 |
+
if prev_toktype != tokenize.INDENT:
|
| 33 |
+
# This is likely a docstring; double-check we're not inside an operator:
|
| 34 |
+
if prev_toktype != tokenize.NEWLINE:
|
| 35 |
+
if start_col > 0:
|
| 36 |
+
out += token_string
|
| 37 |
+
else:
|
| 38 |
+
out += token_string
|
| 39 |
+
prev_toktype = token_type
|
| 40 |
+
last_col = end_col
|
| 41 |
+
last_lineno = end_line
|
| 42 |
+
temp=[]
|
| 43 |
+
for x in out.split('\n'):
|
| 44 |
+
if x.strip()!="":
|
| 45 |
+
temp.append(x)
|
| 46 |
+
return '\n'.join(temp)
|
| 47 |
+
elif lang in ['ruby']:
|
| 48 |
+
return source
|
| 49 |
+
else:
|
| 50 |
+
def replacer(match):
|
| 51 |
+
s = match.group(0)
|
| 52 |
+
if s.startswith('/'):
|
| 53 |
+
return " " # note: a space and not an empty string
|
| 54 |
+
else:
|
| 55 |
+
return s
|
| 56 |
+
pattern = re.compile(
|
| 57 |
+
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
| 58 |
+
re.DOTALL | re.MULTILINE
|
| 59 |
+
)
|
| 60 |
+
temp=[]
|
| 61 |
+
for x in re.sub(pattern, replacer, source).split('\n'):
|
| 62 |
+
if x.strip()!="":
|
| 63 |
+
temp.append(x)
|
| 64 |
+
return '\n'.join(temp)
|
| 65 |
+
|
| 66 |
+
def tree_to_token_index(root_node):
|
| 67 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 68 |
+
return [(root_node.start_point,root_node.end_point)]
|
| 69 |
+
else:
|
| 70 |
+
code_tokens=[]
|
| 71 |
+
for child in root_node.children:
|
| 72 |
+
code_tokens+=tree_to_token_index(child)
|
| 73 |
+
return code_tokens
|
| 74 |
+
|
| 75 |
+
def tree_to_variable_index(root_node,index_to_code):
|
| 76 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
| 77 |
+
index=(root_node.start_point,root_node.end_point)
|
| 78 |
+
_,code=index_to_code[index]
|
| 79 |
+
if root_node.type!=code:
|
| 80 |
+
return [(root_node.start_point,root_node.end_point)]
|
| 81 |
+
else:
|
| 82 |
+
return []
|
| 83 |
+
else:
|
| 84 |
+
code_tokens=[]
|
| 85 |
+
for child in root_node.children:
|
| 86 |
+
code_tokens+=tree_to_variable_index(child,index_to_code)
|
| 87 |
+
return code_tokens
|
| 88 |
+
|
| 89 |
+
def index_to_code_token(index,code):
|
| 90 |
+
start_point=index[0]
|
| 91 |
+
end_point=index[1]
|
| 92 |
+
if start_point[0]==end_point[0]:
|
| 93 |
+
s=code[start_point[0]][start_point[1]:end_point[1]]
|
| 94 |
+
else:
|
| 95 |
+
s=""
|
| 96 |
+
s+=code[start_point[0]][start_point[1]:]
|
| 97 |
+
for i in range(start_point[0]+1,end_point[0]):
|
| 98 |
+
s+=code[i]
|
| 99 |
+
s+=code[end_point[0]][:end_point[1]]
|
| 100 |
+
return s
|
| 101 |
+
|
CodeBLEU/predictions.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
public override void Serialize(ILittleEndianOutput out1){out1.WriteShort(field_1_vcenter);}
|
| 2 |
+
public virtual void AddAll(BlockList<T> src){if (src.size == 0){return;}int srcDirIdx = 0;for (; srcDirIdx < src.tailDirIdx; srcDirIdx++){AddAll(src.Directory[srcDirIdx], 0, BLOCK_SIZE);}if (src.tailBlkIdx != 0){AddAll(src.tailBlock, 0, src.tailBlkIdx);}}
|
| 3 |
+
public override void WriteByte(byte b){if (upto == outerInstance.blockSize){if (currentBlock != null){blocks.Add(currentBlock);}currentBlock = new byte[blockSize];upto = 0;}currentBlock[upto++] = b;}
|
| 4 |
+
public virtual ObjectId GetObjectId(){return objectId;}
|
| 5 |
+
public virtual DeleteDomainEntryResponse DeleteDomainEntry(DeleteDomainEntryRequest request){var options = new InvokeOptions();options.RequestMarshaller = DeleteDomainEntryRequestMarshaller.Instance;options.ResponseUnmarshaller = DeleteDomainEntryResponseUnmarshaller.Instance;return Invoke<DeleteDomainEntryResponse>(request, options);}
|
| 6 |
+
public override long RamBytesUsed(){long sizeInBytes = 0;foreach (FieldIndexData entry in fields.Values){sizeInBytes += entry.RamBytesUsed();}return sizeInBytes;}
|
| 7 |
+
public string GetFullMessage(){byte[] raw = buffer;int msgB = RawParseUtils.TagMessage(raw, 0);if (msgB < 0){return string.Empty;}Encoding enc = RawParseUtils.ParseEncoding(raw);return RawParseUtils.Decode(enc, raw, msgB, raw.Length);}
|
| 8 |
+
public POIFSFileSystem(){this.phase = true;_header.BATCount = 1;_header.BATArray = (new int[]){1 };BATBlock bb = BATBlock.CreateEmptyBATBlock(bigBlockSize, false);bb.WorldBlockIndex=1;_bold_blocks.Add(bb);SetNextBlock(0, POIFSConstants.END_OF_CHAIN);SetNextBlock(1, POIFSConstants.FAT_SECTOR_BLOCK);_property_table.SetStartBlock(0);}
|
| 9 |
+
public void Init(int offset){slice = pool.Buffers[address >> ByteBlockPool.BYTE_BLOCK_SHIFT];Debug.Assert(slice != null);upto = anchor & ByteBlockPool.BYTE_BLOCK_MASK;offset0 = delegate;Debug.Assert(upto < slice.Length);}
|
| 10 |
+
public virtual NGit.Api.SubmoduleAddCommand SetPath(string path){this.path = path;return this;}
|
CodeBLEU/readme.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python calc_code_bleu.py --refs reference_files --hyp candidate_file --lang java ( or c_sharp) --params 0.25,0.25,0.25,0.25(default)
|
CodeBLEU/references.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
public override void Serialize(ILittleEndianOutput out1){out1.WriteShort(field_1_vcenter);}
|
| 2 |
+
public virtual void AddAll(NGit.Util.BlockList<T> src){if (src.size == 0){return;}int srcDirIdx = 0;for (; srcDirIdx < src.tailDirIdx; srcDirIdx++){AddAll(src.directory[srcDirIdx], 0, BLOCK_SIZE);}if (src.tailBlkIdx != 0){AddAll(src.tailBlock, 0, src.tailBlkIdx);}}
|
| 3 |
+
public override void WriteByte(byte b){if (outerInstance.upto == outerInstance.blockSize){if (outerInstance.currentBlock != null){outerInstance.blocks.Add(outerInstance.currentBlock);outerInstance.blockEnd.Add(outerInstance.upto);}outerInstance.currentBlock = new byte[outerInstance.blockSize];outerInstance.upto = 0;}outerInstance.currentBlock[outerInstance.upto++] = (byte)b;}
|
| 4 |
+
public virtual ObjectId GetObjectId(){return objectId;}
|
| 5 |
+
public virtual DeleteDomainEntryResponse DeleteDomainEntry(DeleteDomainEntryRequest request){var options = new InvokeOptions();options.RequestMarshaller = DeleteDomainEntryRequestMarshaller.Instance;options.ResponseUnmarshaller = DeleteDomainEntryResponseUnmarshaller.Instance;return Invoke<DeleteDomainEntryResponse>(request, options);}
|
| 6 |
+
public virtual long RamBytesUsed(){return fst == null ? 0 : fst.GetSizeInBytes();}
|
| 7 |
+
public string GetFullMessage(){byte[] raw = buffer;int msgB = RawParseUtils.TagMessage(raw, 0);if (msgB < 0){return string.Empty;}Encoding enc = RawParseUtils.ParseEncoding(raw);return RawParseUtils.Decode(enc, raw, msgB, raw.Length);}
|
| 8 |
+
public POIFSFileSystem(){HeaderBlock headerBlock = new HeaderBlock(bigBlockSize);_property_table = new PropertyTable(headerBlock);_documents = new ArrayList();_root = null;}
|
| 9 |
+
public void Init(int address){slice = pool.Buffers[address >> ByteBlockPool.BYTE_BLOCK_SHIFT];Debug.Assert(slice != null);upto = address & ByteBlockPool.BYTE_BLOCK_MASK;offset0 = address;Debug.Assert(upto < slice.Length);}
|
| 10 |
+
public virtual NGit.Api.SubmoduleAddCommand SetPath(string path){this.path = path;return this;}
|
CodeBLEU/syntax_match.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
from .parser import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
| 6 |
+
from .parser import (remove_comments_and_docstrings,
|
| 7 |
+
tree_to_token_index,
|
| 8 |
+
index_to_code_token,
|
| 9 |
+
tree_to_variable_index)
|
| 10 |
+
from tree_sitter import Language, Parser
|
| 11 |
+
|
| 12 |
+
dfg_function={
|
| 13 |
+
'python':DFG_python,
|
| 14 |
+
'java':DFG_java,
|
| 15 |
+
'ruby':DFG_ruby,
|
| 16 |
+
'go':DFG_go,
|
| 17 |
+
'php':DFG_php,
|
| 18 |
+
'javascript':DFG_javascript,
|
| 19 |
+
'c_sharp':DFG_csharp,
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
def calc_syntax_match(references, candidate, lang):
|
| 23 |
+
return corpus_syntax_match([references], [candidate], lang)
|
| 24 |
+
|
| 25 |
+
def corpus_syntax_match(references, candidates, lang):
|
| 26 |
+
# print(os.listdir())
|
| 27 |
+
JAVA_LANGUAGE = Language(os.path.abspath(os.path.dirname(__file__)) + '/parser/my-languages.so', lang)
|
| 28 |
+
parser = Parser()
|
| 29 |
+
parser.set_language(JAVA_LANGUAGE)
|
| 30 |
+
match_count = 0
|
| 31 |
+
total_count = 0
|
| 32 |
+
|
| 33 |
+
for i in range(len(candidates)):
|
| 34 |
+
references_sample = references[i]
|
| 35 |
+
candidate = candidates[i]
|
| 36 |
+
for reference in references_sample:
|
| 37 |
+
try:
|
| 38 |
+
candidate=remove_comments_and_docstrings(candidate,'java')
|
| 39 |
+
except:
|
| 40 |
+
pass
|
| 41 |
+
try:
|
| 42 |
+
reference=remove_comments_and_docstrings(reference,'java')
|
| 43 |
+
except:
|
| 44 |
+
pass
|
| 45 |
+
|
| 46 |
+
candidate_tree = parser.parse(bytes(candidate,'utf8')).root_node
|
| 47 |
+
|
| 48 |
+
reference_tree = parser.parse(bytes(reference,'utf8')).root_node
|
| 49 |
+
|
| 50 |
+
def get_all_sub_trees(root_node):
|
| 51 |
+
node_stack = []
|
| 52 |
+
sub_tree_sexp_list = []
|
| 53 |
+
depth = 1
|
| 54 |
+
node_stack.append([root_node, depth])
|
| 55 |
+
while len(node_stack) != 0:
|
| 56 |
+
cur_node, cur_depth = node_stack.pop()
|
| 57 |
+
sub_tree_sexp_list.append([cur_node.sexp(), cur_depth])
|
| 58 |
+
for child_node in cur_node.children:
|
| 59 |
+
if len(child_node.children) != 0:
|
| 60 |
+
depth = cur_depth + 1
|
| 61 |
+
node_stack.append([child_node, depth])
|
| 62 |
+
return sub_tree_sexp_list
|
| 63 |
+
cand_sexps = [x[0] for x in get_all_sub_trees(candidate_tree)]
|
| 64 |
+
ref_sexps = get_all_sub_trees(reference_tree)
|
| 65 |
+
|
| 66 |
+
# print(cand_sexps)
|
| 67 |
+
# print(ref_sexps)
|
| 68 |
+
|
| 69 |
+
for sub_tree, depth in ref_sexps:
|
| 70 |
+
if sub_tree in cand_sexps:
|
| 71 |
+
match_count += 1
|
| 72 |
+
total_count += len(ref_sexps)
|
| 73 |
+
|
| 74 |
+
score = match_count / total_count
|
| 75 |
+
return score
|
CodeBLEU/utils.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Natural Language Toolkit: Utility functions
|
| 2 |
+
#
|
| 3 |
+
# Copyright (C) 2001-2020 NLTK Project
|
| 4 |
+
# Author: Steven Bird <stevenbird1@gmail.com>
|
| 5 |
+
# URL: <http://nltk.org/>
|
| 6 |
+
# For license information, see LICENSE.TXT
|
| 7 |
+
|
| 8 |
+
from itertools import chain
|
| 9 |
+
|
| 10 |
+
def pad_sequence(
|
| 11 |
+
sequence,
|
| 12 |
+
n,
|
| 13 |
+
pad_left=False,
|
| 14 |
+
pad_right=False,
|
| 15 |
+
left_pad_symbol=None,
|
| 16 |
+
right_pad_symbol=None,
|
| 17 |
+
):
|
| 18 |
+
"""
|
| 19 |
+
Returns a padded sequence of items before ngram extraction.
|
| 20 |
+
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
| 21 |
+
['<s>', 1, 2, 3, 4, 5, '</s>']
|
| 22 |
+
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
| 23 |
+
['<s>', 1, 2, 3, 4, 5]
|
| 24 |
+
>>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
| 25 |
+
[1, 2, 3, 4, 5, '</s>']
|
| 26 |
+
:param sequence: the source data to be padded
|
| 27 |
+
:type sequence: sequence or iter
|
| 28 |
+
:param n: the degree of the ngrams
|
| 29 |
+
:type n: int
|
| 30 |
+
:param pad_left: whether the ngrams should be left-padded
|
| 31 |
+
:type pad_left: bool
|
| 32 |
+
:param pad_right: whether the ngrams should be right-padded
|
| 33 |
+
:type pad_right: bool
|
| 34 |
+
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
| 35 |
+
:type left_pad_symbol: any
|
| 36 |
+
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
| 37 |
+
:type right_pad_symbol: any
|
| 38 |
+
:rtype: sequence or iter
|
| 39 |
+
"""
|
| 40 |
+
sequence = iter(sequence)
|
| 41 |
+
if pad_left:
|
| 42 |
+
sequence = chain((left_pad_symbol,) * (n - 1), sequence)
|
| 43 |
+
if pad_right:
|
| 44 |
+
sequence = chain(sequence, (right_pad_symbol,) * (n - 1))
|
| 45 |
+
return sequence
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# add a flag to pad the sequence so we get peripheral ngrams?
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def ngrams(
|
| 52 |
+
sequence,
|
| 53 |
+
n,
|
| 54 |
+
pad_left=False,
|
| 55 |
+
pad_right=False,
|
| 56 |
+
left_pad_symbol=None,
|
| 57 |
+
right_pad_symbol=None,
|
| 58 |
+
):
|
| 59 |
+
"""
|
| 60 |
+
Return the ngrams generated from a sequence of items, as an iterator.
|
| 61 |
+
For example:
|
| 62 |
+
>>> from nltk.util import ngrams
|
| 63 |
+
>>> list(ngrams([1,2,3,4,5], 3))
|
| 64 |
+
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
|
| 65 |
+
Wrap with list for a list version of this function. Set pad_left
|
| 66 |
+
or pad_right to true in order to get additional ngrams:
|
| 67 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
|
| 68 |
+
[(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
|
| 69 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
| 70 |
+
[(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
| 71 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
| 72 |
+
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
|
| 73 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
| 74 |
+
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
| 75 |
+
:param sequence: the source data to be converted into ngrams
|
| 76 |
+
:type sequence: sequence or iter
|
| 77 |
+
:param n: the degree of the ngrams
|
| 78 |
+
:type n: int
|
| 79 |
+
:param pad_left: whether the ngrams should be left-padded
|
| 80 |
+
:type pad_left: bool
|
| 81 |
+
:param pad_right: whether the ngrams should be right-padded
|
| 82 |
+
:type pad_right: bool
|
| 83 |
+
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
| 84 |
+
:type left_pad_symbol: any
|
| 85 |
+
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
| 86 |
+
:type right_pad_symbol: any
|
| 87 |
+
:rtype: sequence or iter
|
| 88 |
+
"""
|
| 89 |
+
sequence = pad_sequence(
|
| 90 |
+
sequence, n, pad_left, pad_right, left_pad_symbol, right_pad_symbol
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
history = []
|
| 94 |
+
while n > 1:
|
| 95 |
+
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
| 96 |
+
try:
|
| 97 |
+
next_item = next(sequence)
|
| 98 |
+
except StopIteration:
|
| 99 |
+
# no more data, terminate the generator
|
| 100 |
+
return
|
| 101 |
+
history.append(next_item)
|
| 102 |
+
n -= 1
|
| 103 |
+
for item in sequence:
|
| 104 |
+
history.append(item)
|
| 105 |
+
yield tuple(history)
|
| 106 |
+
del history[0]
|
CodeBLEU/weighted_ngram_match.py
ADDED
|
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) Microsoft Corporation.
|
| 3 |
+
# Licensed under the MIT license.
|
| 4 |
+
|
| 5 |
+
# Natural Language Toolkit: BLEU Score
|
| 6 |
+
#
|
| 7 |
+
# Copyright (C) 2001-2020 NLTK Project
|
| 8 |
+
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
| 9 |
+
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
| 10 |
+
# URL: <http://nltk.org/>
|
| 11 |
+
# For license information, see LICENSE.TXT
|
| 12 |
+
|
| 13 |
+
"""BLEU score implementation."""
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
import sys
|
| 17 |
+
from fractions import Fraction
|
| 18 |
+
import warnings
|
| 19 |
+
from collections import Counter
|
| 20 |
+
|
| 21 |
+
from .utils import ngrams
|
| 22 |
+
import pdb
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def sentence_bleu(
|
| 26 |
+
references,
|
| 27 |
+
hypothesis,
|
| 28 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
| 29 |
+
smoothing_function=None,
|
| 30 |
+
auto_reweigh=False,
|
| 31 |
+
):
|
| 32 |
+
"""
|
| 33 |
+
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
| 34 |
+
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
| 35 |
+
"BLEU: a method for automatic evaluation of machine translation."
|
| 36 |
+
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
| 37 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
| 38 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
| 39 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
| 40 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
| 41 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
| 42 |
+
... 'that', 'party', 'direct']
|
| 43 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
| 44 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
| 45 |
+
... 'heed', 'Party', 'commands']
|
| 46 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
| 47 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
| 48 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
| 49 |
+
... 'Party']
|
| 50 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
| 51 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
| 52 |
+
... 'of', 'the', 'party']
|
| 53 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
| 54 |
+
0.5045...
|
| 55 |
+
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
| 56 |
+
value 0. This is because the precision for the order of n-grams without
|
| 57 |
+
overlap is 0, and the geometric mean in the final BLEU score computation
|
| 58 |
+
multiplies the 0 with the precision of other n-grams. This results in 0
|
| 59 |
+
(independently of the precision of the othe n-gram orders). The following
|
| 60 |
+
example has zero 3-gram and 4-gram overlaps:
|
| 61 |
+
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
| 62 |
+
0.0
|
| 63 |
+
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
| 64 |
+
function can be used.
|
| 65 |
+
>>> chencherry = SmoothingFunction()
|
| 66 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
| 67 |
+
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
| 68 |
+
0.0370...
|
| 69 |
+
The default BLEU calculates a score for up to 4-grams using uniform
|
| 70 |
+
weights (this is called BLEU-4). To evaluate your translations with
|
| 71 |
+
higher/lower order ngrams, use customized weights. E.g. when accounting
|
| 72 |
+
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
| 73 |
+
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
| 74 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
| 75 |
+
0.3920...
|
| 76 |
+
:param references: reference sentences
|
| 77 |
+
:type references: list(list(str))
|
| 78 |
+
:param hypothesis: a hypothesis sentence
|
| 79 |
+
:type hypothesis: list(str)
|
| 80 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
| 81 |
+
:type weights: list(float)
|
| 82 |
+
:param smoothing_function:
|
| 83 |
+
:type smoothing_function: SmoothingFunction
|
| 84 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
| 85 |
+
:type auto_reweigh: bool
|
| 86 |
+
:return: The sentence-level BLEU score.
|
| 87 |
+
:rtype: float
|
| 88 |
+
"""
|
| 89 |
+
return corpus_bleu(
|
| 90 |
+
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def corpus_bleu(
|
| 95 |
+
list_of_references,
|
| 96 |
+
hypotheses,
|
| 97 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
| 98 |
+
smoothing_function=None,
|
| 99 |
+
auto_reweigh=False,
|
| 100 |
+
):
|
| 101 |
+
"""
|
| 102 |
+
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
| 103 |
+
the hypotheses and their respective references.
|
| 104 |
+
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
| 105 |
+
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
| 106 |
+
the micro-average precision (i.e. summing the numerators and denominators
|
| 107 |
+
for each hypothesis-reference(s) pairs before the division).
|
| 108 |
+
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
| 109 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
| 110 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
| 111 |
+
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
| 112 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
| 113 |
+
... 'heed', 'Party', 'commands']
|
| 114 |
+
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
| 115 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
| 116 |
+
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
| 117 |
+
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
| 118 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
| 119 |
+
... 'of', 'the', 'party']
|
| 120 |
+
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
| 121 |
+
... 'interested', 'in', 'world', 'history']
|
| 122 |
+
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
| 123 |
+
... 'because', 'he', 'read', 'the', 'book']
|
| 124 |
+
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
| 125 |
+
>>> hypotheses = [hyp1, hyp2]
|
| 126 |
+
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
| 127 |
+
0.5920...
|
| 128 |
+
The example below show that corpus_bleu() is different from averaging
|
| 129 |
+
sentence_bleu() for hypotheses
|
| 130 |
+
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
| 131 |
+
>>> score2 = sentence_bleu([ref2a], hyp2)
|
| 132 |
+
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
| 133 |
+
0.6223...
|
| 134 |
+
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
| 135 |
+
:type list_of_references: list(list(list(str)))
|
| 136 |
+
:param hypotheses: a list of hypothesis sentences
|
| 137 |
+
:type hypotheses: list(list(str))
|
| 138 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
| 139 |
+
:type weights: list(float)
|
| 140 |
+
:param smoothing_function:
|
| 141 |
+
:type smoothing_function: SmoothingFunction
|
| 142 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
| 143 |
+
:type auto_reweigh: bool
|
| 144 |
+
:return: The corpus-level BLEU score.
|
| 145 |
+
:rtype: float
|
| 146 |
+
"""
|
| 147 |
+
# Before proceeding to compute BLEU, perform sanity checks.
|
| 148 |
+
|
| 149 |
+
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
| 150 |
+
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
| 151 |
+
hyp_lengths, ref_lengths = 0, 0
|
| 152 |
+
|
| 153 |
+
assert len(list_of_references) == len(hypotheses), (
|
| 154 |
+
"The number of hypotheses and their reference(s) should be the " "same "
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Iterate through each hypothesis and their corresponding references.
|
| 158 |
+
for references, hypothesis in zip(list_of_references, hypotheses):
|
| 159 |
+
# For each order of ngram, calculate the numerator and
|
| 160 |
+
# denominator for the corpus-level modified precision.
|
| 161 |
+
for i, _ in enumerate(weights, start=1):
|
| 162 |
+
p_i_numeraotr, p_i_denominator = modified_recall(references, hypothesis, i)
|
| 163 |
+
p_numerators[i] += p_i_numeraotr
|
| 164 |
+
p_denominators[i] += p_i_denominator
|
| 165 |
+
|
| 166 |
+
# Calculate the hypothesis length and the closest reference length.
|
| 167 |
+
# Adds them to the corpus-level hypothesis and reference counts.
|
| 168 |
+
hyp_len = len(hypothesis)
|
| 169 |
+
hyp_lengths += hyp_len
|
| 170 |
+
ref_lengths += closest_ref_length(references, hyp_len)
|
| 171 |
+
|
| 172 |
+
# Calculate corpus-level brevity penalty.
|
| 173 |
+
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
| 174 |
+
|
| 175 |
+
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
| 176 |
+
# order of n-grams < 4 and weights is set at default.
|
| 177 |
+
if auto_reweigh:
|
| 178 |
+
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
| 179 |
+
weights = (1 / hyp_lengths,) * hyp_lengths
|
| 180 |
+
|
| 181 |
+
# Collects the various recall values for the different ngram orders.
|
| 182 |
+
p_n = [
|
| 183 |
+
(p_numerators[i], p_denominators[i])
|
| 184 |
+
for i, _ in enumerate(weights, start=1)
|
| 185 |
+
]
|
| 186 |
+
|
| 187 |
+
# Returns 0 if there's no matching n-grams
|
| 188 |
+
# We only need to check for p_numerators[1] == 0, since if there's
|
| 189 |
+
# no unigrams, there won't be any higher order ngrams.
|
| 190 |
+
if p_numerators[1] == 0:
|
| 191 |
+
return 0
|
| 192 |
+
|
| 193 |
+
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
| 194 |
+
if not smoothing_function:
|
| 195 |
+
smoothing_function = SmoothingFunction().method1
|
| 196 |
+
# Smoothen the modified precision.
|
| 197 |
+
# Note: smoothing_function() may convert values into floats;
|
| 198 |
+
# it tries to retain the Fraction object as much as the
|
| 199 |
+
# smoothing method allows.
|
| 200 |
+
p_n = smoothing_function(
|
| 201 |
+
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
| 202 |
+
)
|
| 203 |
+
# pdb.set_trace()
|
| 204 |
+
s = (w_i * math.log(p_i[0]/p_i[1]) for w_i, p_i in zip(weights, p_n))
|
| 205 |
+
s = bp * math.exp(math.fsum(s))
|
| 206 |
+
return s
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def modified_recall(references, hypothesis, n):
|
| 210 |
+
"""
|
| 211 |
+
Calculate modified ngram recall.
|
| 212 |
+
:param references: A list of reference translations.
|
| 213 |
+
:type references: list(list(str))
|
| 214 |
+
:param hypothesis: A hypothesis translation.
|
| 215 |
+
:type hypothesis: list(str)
|
| 216 |
+
:param n: The ngram order.
|
| 217 |
+
:type n: int
|
| 218 |
+
:return: BLEU's modified precision for the nth order ngram.
|
| 219 |
+
:rtype: Fraction
|
| 220 |
+
"""
|
| 221 |
+
# Extracts all ngrams in hypothesis
|
| 222 |
+
# Set an empty Counter if hypothesis is empty.
|
| 223 |
+
# pdb.set_trace()
|
| 224 |
+
numerator = 0
|
| 225 |
+
denominator = 0
|
| 226 |
+
|
| 227 |
+
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
| 228 |
+
# Extract a union of references' counts.
|
| 229 |
+
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
| 230 |
+
max_counts = {}
|
| 231 |
+
for reference_and_weights in references:
|
| 232 |
+
reference = reference_and_weights[0]
|
| 233 |
+
weights = reference_and_weights[1]
|
| 234 |
+
reference_counts = (
|
| 235 |
+
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
| 236 |
+
)
|
| 237 |
+
# for ngram in reference_counts:
|
| 238 |
+
# max_counts[ngram] = max(max_counts.get(ngram, 0), counts[ngram])
|
| 239 |
+
clipped_counts = {
|
| 240 |
+
ngram: min(count, counts[ngram]) for ngram, count in reference_counts.items()
|
| 241 |
+
}
|
| 242 |
+
# reweight
|
| 243 |
+
if n == 1 and len(weights) == len(reference_counts):
|
| 244 |
+
def weighted_sum(weights, counts):
|
| 245 |
+
sum_counts = 0
|
| 246 |
+
for ngram, count in counts.items():
|
| 247 |
+
sum_counts += count * (weights[ngram[0]] if ngram[0] in weights else 1)
|
| 248 |
+
return sum_counts
|
| 249 |
+
|
| 250 |
+
numerator += weighted_sum(weights, clipped_counts)
|
| 251 |
+
denominator += max(1, weighted_sum(weights, reference_counts))
|
| 252 |
+
|
| 253 |
+
else:
|
| 254 |
+
numerator += sum(clipped_counts.values())
|
| 255 |
+
denominator += max(1, sum(reference_counts.values()))
|
| 256 |
+
|
| 257 |
+
# # Assigns the intersection between hypothesis and references' counts.
|
| 258 |
+
# clipped_counts = {
|
| 259 |
+
# ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
| 260 |
+
# }
|
| 261 |
+
|
| 262 |
+
# numerator += sum(clipped_counts.values())
|
| 263 |
+
# # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
| 264 |
+
# # Usually this happens when the ngram order is > len(reference).
|
| 265 |
+
# denominator += max(1, sum(counts.values()))
|
| 266 |
+
|
| 267 |
+
#return Fraction(numerator, denominator, _normalize=False)
|
| 268 |
+
return numerator, denominator
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def closest_ref_length(references, hyp_len):
|
| 272 |
+
"""
|
| 273 |
+
This function finds the reference that is the closest length to the
|
| 274 |
+
hypothesis. The closest reference length is referred to as *r* variable
|
| 275 |
+
from the brevity penalty formula in Papineni et. al. (2002)
|
| 276 |
+
:param references: A list of reference translations.
|
| 277 |
+
:type references: list(list(str))
|
| 278 |
+
:param hyp_len: The length of the hypothesis.
|
| 279 |
+
:type hyp_len: int
|
| 280 |
+
:return: The length of the reference that's closest to the hypothesis.
|
| 281 |
+
:rtype: int
|
| 282 |
+
"""
|
| 283 |
+
ref_lens = (len(reference) for reference in references)
|
| 284 |
+
closest_ref_len = min(
|
| 285 |
+
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
| 286 |
+
)
|
| 287 |
+
return closest_ref_len
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def brevity_penalty(closest_ref_len, hyp_len):
|
| 291 |
+
"""
|
| 292 |
+
Calculate brevity penalty.
|
| 293 |
+
As the modified n-gram precision still has the problem from the short
|
| 294 |
+
length sentence, brevity penalty is used to modify the overall BLEU
|
| 295 |
+
score according to length.
|
| 296 |
+
An example from the paper. There are three references with length 12, 15
|
| 297 |
+
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
| 298 |
+
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
| 299 |
+
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
| 300 |
+
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
| 301 |
+
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
| 302 |
+
>>> references = [reference1, reference2, reference3]
|
| 303 |
+
>>> hyp_len = len(hypothesis)
|
| 304 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 305 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
| 306 |
+
1.0
|
| 307 |
+
In case a hypothesis translation is shorter than the references, penalty is
|
| 308 |
+
applied.
|
| 309 |
+
>>> references = [['a'] * 28, ['a'] * 28]
|
| 310 |
+
>>> hypothesis = ['a'] * 12
|
| 311 |
+
>>> hyp_len = len(hypothesis)
|
| 312 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 313 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
| 314 |
+
0.2635971381157267
|
| 315 |
+
The length of the closest reference is used to compute the penalty. If the
|
| 316 |
+
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
| 317 |
+
penalty is applied because the hypothesis length (12) is less then the
|
| 318 |
+
closest reference length (13).
|
| 319 |
+
>>> references = [['a'] * 13, ['a'] * 2]
|
| 320 |
+
>>> hypothesis = ['a'] * 12
|
| 321 |
+
>>> hyp_len = len(hypothesis)
|
| 322 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 323 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
| 324 |
+
0.9200...
|
| 325 |
+
The brevity penalty doesn't depend on reference order. More importantly,
|
| 326 |
+
when two reference sentences are at the same distance, the shortest
|
| 327 |
+
reference sentence length is used.
|
| 328 |
+
>>> references = [['a'] * 13, ['a'] * 11]
|
| 329 |
+
>>> hypothesis = ['a'] * 12
|
| 330 |
+
>>> hyp_len = len(hypothesis)
|
| 331 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 332 |
+
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
| 333 |
+
>>> hyp_len = len(hypothesis)
|
| 334 |
+
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
| 335 |
+
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
| 336 |
+
>>> bp1 == bp2 == 1
|
| 337 |
+
True
|
| 338 |
+
A test example from mteval-v13a.pl (starting from the line 705):
|
| 339 |
+
>>> references = [['a'] * 11, ['a'] * 8]
|
| 340 |
+
>>> hypothesis = ['a'] * 7
|
| 341 |
+
>>> hyp_len = len(hypothesis)
|
| 342 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 343 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
| 344 |
+
0.8668...
|
| 345 |
+
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
| 346 |
+
>>> hypothesis = ['a'] * 7
|
| 347 |
+
>>> hyp_len = len(hypothesis)
|
| 348 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
| 349 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
| 350 |
+
1.0
|
| 351 |
+
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
| 352 |
+
sum of all the hypotheses' lengths for a corpus
|
| 353 |
+
:type hyp_len: int
|
| 354 |
+
:param closest_ref_len: The length of the closest reference for a single
|
| 355 |
+
hypothesis OR the sum of all the closest references for every hypotheses.
|
| 356 |
+
:type closest_ref_len: int
|
| 357 |
+
:return: BLEU's brevity penalty.
|
| 358 |
+
:rtype: float
|
| 359 |
+
"""
|
| 360 |
+
if hyp_len > closest_ref_len:
|
| 361 |
+
return 1
|
| 362 |
+
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
| 363 |
+
elif hyp_len == 0:
|
| 364 |
+
return 0
|
| 365 |
+
else:
|
| 366 |
+
return math.exp(1 - closest_ref_len / hyp_len)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class SmoothingFunction:
|
| 370 |
+
"""
|
| 371 |
+
This is an implementation of the smoothing techniques
|
| 372 |
+
for segment-level BLEU scores that was presented in
|
| 373 |
+
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
| 374 |
+
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
| 375 |
+
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
| 379 |
+
"""
|
| 380 |
+
This will initialize the parameters required for the various smoothing
|
| 381 |
+
techniques, the default values are set to the numbers used in the
|
| 382 |
+
experiments from Chen and Cherry (2014).
|
| 383 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
| 384 |
+
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
| 385 |
+
... 'commands', 'of', 'the', 'party']
|
| 386 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
| 387 |
+
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
| 388 |
+
... 'Party', 'commands']
|
| 389 |
+
>>> chencherry = SmoothingFunction()
|
| 390 |
+
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
| 391 |
+
0.4118...
|
| 392 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
| 393 |
+
0.4118...
|
| 394 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
| 395 |
+
0.4118...
|
| 396 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
| 397 |
+
0.4489...
|
| 398 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
| 399 |
+
0.4118...
|
| 400 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
| 401 |
+
0.4118...
|
| 402 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
| 403 |
+
0.4905...
|
| 404 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
| 405 |
+
0.4135...
|
| 406 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
| 407 |
+
0.4905...
|
| 408 |
+
:param epsilon: the epsilon value use in method 1
|
| 409 |
+
:type epsilon: float
|
| 410 |
+
:param alpha: the alpha value use in method 6
|
| 411 |
+
:type alpha: int
|
| 412 |
+
:param k: the k value use in method 4
|
| 413 |
+
:type k: int
|
| 414 |
+
"""
|
| 415 |
+
self.epsilon = epsilon
|
| 416 |
+
self.alpha = alpha
|
| 417 |
+
self.k = k
|
| 418 |
+
|
| 419 |
+
def method0(self, p_n, *args, **kwargs):
|
| 420 |
+
"""
|
| 421 |
+
No smoothing.
|
| 422 |
+
"""
|
| 423 |
+
p_n_new = []
|
| 424 |
+
for i, p_i in enumerate(p_n):
|
| 425 |
+
if p_i[0] != 0:
|
| 426 |
+
p_n_new.append(p_i)
|
| 427 |
+
else:
|
| 428 |
+
_msg = str(
|
| 429 |
+
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
| 430 |
+
"Therefore the BLEU score evaluates to 0, independently of\n"
|
| 431 |
+
"how many N-gram overlaps of lower order it contains.\n"
|
| 432 |
+
"Consider using lower n-gram order or use "
|
| 433 |
+
"SmoothingFunction()"
|
| 434 |
+
).format(i + 1)
|
| 435 |
+
warnings.warn(_msg)
|
| 436 |
+
# When numerator==0 where denonminator==0 or !=0, the result
|
| 437 |
+
# for the precision score should be equal to 0 or undefined.
|
| 438 |
+
# Due to BLEU geometric mean computation in logarithm space,
|
| 439 |
+
# we we need to take the return sys.float_info.min such that
|
| 440 |
+
# math.log(sys.float_info.min) returns a 0 precision score.
|
| 441 |
+
p_n_new.append(sys.float_info.min)
|
| 442 |
+
return p_n_new
|
| 443 |
+
|
| 444 |
+
def method1(self, p_n, *args, **kwargs):
|
| 445 |
+
"""
|
| 446 |
+
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
| 447 |
+
"""
|
| 448 |
+
return [
|
| 449 |
+
((p_i[0] + self.epsilon), p_i[1])
|
| 450 |
+
if p_i[0] == 0
|
| 451 |
+
else p_i
|
| 452 |
+
for p_i in p_n
|
| 453 |
+
]
|
| 454 |
+
|
| 455 |
+
def method2(self, p_n, *args, **kwargs):
|
| 456 |
+
"""
|
| 457 |
+
Smoothing method 2: Add 1 to both numerator and denominator from
|
| 458 |
+
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
| 459 |
+
machine translation quality using longest common subsequence and
|
| 460 |
+
skip-bigram statistics. In ACL04.
|
| 461 |
+
"""
|
| 462 |
+
return [
|
| 463 |
+
(p_i[0] + 1, p_i[1] + 1)
|
| 464 |
+
for p_i in p_n
|
| 465 |
+
]
|
| 466 |
+
|
| 467 |
+
def method3(self, p_n, *args, **kwargs):
|
| 468 |
+
"""
|
| 469 |
+
Smoothing method 3: NIST geometric sequence smoothing
|
| 470 |
+
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
| 471 |
+
precision score whose matching n-gram count is null.
|
| 472 |
+
k is 1 for the first 'n' value for which the n-gram match count is null/
|
| 473 |
+
For example, if the text contains:
|
| 474 |
+
- one 2-gram match
|
| 475 |
+
- and (consequently) two 1-gram matches
|
| 476 |
+
the n-gram count for each individual precision score would be:
|
| 477 |
+
- n=1 => prec_count = 2 (two unigrams)
|
| 478 |
+
- n=2 => prec_count = 1 (one bigram)
|
| 479 |
+
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
| 480 |
+
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
| 481 |
+
"""
|
| 482 |
+
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
| 483 |
+
for i, p_i in enumerate(p_n):
|
| 484 |
+
if p_i.numerator == 0:
|
| 485 |
+
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
| 486 |
+
incvnt += 1
|
| 487 |
+
return p_n
|
| 488 |
+
|
| 489 |
+
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 490 |
+
"""
|
| 491 |
+
Smoothing method 4:
|
| 492 |
+
Shorter translations may have inflated precision values due to having
|
| 493 |
+
smaller denominators; therefore, we give them proportionally
|
| 494 |
+
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
| 495 |
+
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
| 496 |
+
"""
|
| 497 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 498 |
+
for i, p_i in enumerate(p_n):
|
| 499 |
+
if p_i.numerator == 0 and hyp_len != 0:
|
| 500 |
+
incvnt = i + 1 * self.k / math.log(
|
| 501 |
+
hyp_len
|
| 502 |
+
) # Note that this K is different from the K from NIST.
|
| 503 |
+
p_n[i] = incvnt / p_i.denominator
|
| 504 |
+
return p_n
|
| 505 |
+
|
| 506 |
+
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 507 |
+
"""
|
| 508 |
+
Smoothing method 5:
|
| 509 |
+
The matched counts for similar values of n should be similar. To a
|
| 510 |
+
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
| 511 |
+
matched counts.
|
| 512 |
+
"""
|
| 513 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 514 |
+
m = {}
|
| 515 |
+
# Requires an precision value for an addition ngram order.
|
| 516 |
+
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
| 517 |
+
m[-1] = p_n[0] + 1
|
| 518 |
+
for i, p_i in enumerate(p_n):
|
| 519 |
+
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
| 520 |
+
m[i] = p_n[i]
|
| 521 |
+
return p_n
|
| 522 |
+
|
| 523 |
+
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 524 |
+
"""
|
| 525 |
+
Smoothing method 6:
|
| 526 |
+
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
| 527 |
+
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
| 528 |
+
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
| 529 |
+
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
| 530 |
+
Gradient Ascent. In NAACL.
|
| 531 |
+
"""
|
| 532 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 533 |
+
# This smoothing only works when p_1 and p_2 is non-zero.
|
| 534 |
+
# Raise an error with an appropriate message when the input is too short
|
| 535 |
+
# to use this smoothing technique.
|
| 536 |
+
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
| 537 |
+
for i, p_i in enumerate(p_n):
|
| 538 |
+
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
| 539 |
+
continue
|
| 540 |
+
else:
|
| 541 |
+
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
| 542 |
+
# No. of ngrams in translation that matches the reference.
|
| 543 |
+
m = p_i.numerator
|
| 544 |
+
# No. of ngrams in translation.
|
| 545 |
+
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
| 546 |
+
# Calculates the interpolated precision.
|
| 547 |
+
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
| 548 |
+
return p_n
|
| 549 |
+
|
| 550 |
+
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
| 551 |
+
"""
|
| 552 |
+
Smoothing method 7:
|
| 553 |
+
Interpolates methods 4 and 5.
|
| 554 |
+
"""
|
| 555 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
| 556 |
+
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
| 557 |
+
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
| 558 |
+
return p_n
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
datasets:
|
| 4 |
-
|
| 5 |
tags:
|
|
@@ -12,7 +12,7 @@ app_file: app.py
|
|
| 12 |
pinned: false
|
| 13 |
---
|
| 14 |
|
| 15 |
-
# Metric Card for
|
| 16 |
|
| 17 |
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
| 18 |
|
|
|
|
| 1 |
---
|
| 2 |
+
title: CodeBLEU
|
| 3 |
datasets:
|
| 4 |
-
|
| 5 |
tags:
|
|
|
|
| 12 |
pinned: false
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Metric Card for CodeBLEU
|
| 16 |
|
| 17 |
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
| 18 |
|
__init__.py
ADDED
|
File without changes
|
codebleu.py
CHANGED
|
@@ -11,24 +11,27 @@
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
-
"""
|
| 15 |
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# TODO: Add BibTeX citation
|
| 21 |
_CITATION = """\
|
| 22 |
@InProceedings{huggingface:module,
|
| 23 |
-
title = {A
|
| 24 |
-
authors={
|
| 25 |
-
year={
|
| 26 |
}
|
| 27 |
"""
|
| 28 |
|
| 29 |
# TODO: Add description of the module here
|
| 30 |
_DESCRIPTION = """\
|
| 31 |
-
This new module is
|
|
|
|
| 32 |
"""
|
| 33 |
|
| 34 |
|
|
@@ -38,28 +41,33 @@ Calculates how good are predictions given some references, using certain scores
|
|
| 38 |
Args:
|
| 39 |
predictions: list of predictions to score. Each predictions
|
| 40 |
should be a string with tokens separated by spaces.
|
| 41 |
-
references: list of
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
Returns:
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
| 46 |
Examples:
|
| 47 |
-
Examples should be written in doctest format, and should illustrate how
|
| 48 |
-
to use the function.
|
| 49 |
|
| 50 |
-
>>>
|
| 51 |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
| 52 |
>>> print(results)
|
| 53 |
{'accuracy': 1.0}
|
| 54 |
"""
|
| 55 |
|
| 56 |
# TODO: Define external resources urls if needed
|
| 57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 58 |
|
| 59 |
|
| 60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
-
class
|
| 62 |
-
"""
|
| 63 |
|
| 64 |
def _info(self):
|
| 65 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
@@ -70,26 +78,42 @@ class codebleu(evaluate.Metric):
|
|
| 70 |
citation=_CITATION,
|
| 71 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
# This defines the format of each prediction and reference
|
| 73 |
-
features=datasets.Features(
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
# Homepage of the module for documentation
|
| 78 |
-
homepage="
|
| 79 |
# Additional links to the codebase or references
|
| 80 |
-
codebase_urls=[
|
| 81 |
-
reference_urls=[
|
|
|
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
|
| 84 |
def _download_and_prepare(self, dl_manager):
|
| 85 |
"""Optional: download external resources useful to compute the scores"""
|
| 86 |
# TODO: Download external resources if needed
|
|
|
|
| 87 |
pass
|
| 88 |
|
| 89 |
-
def _compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
"""Returns the scores"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
+
"""CodeBLEU metric."""
|
| 15 |
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
|
| 19 |
+
from .CodeBLEU import calc_codebleu
|
| 20 |
+
|
| 21 |
|
| 22 |
# TODO: Add BibTeX citation
|
| 23 |
_CITATION = """\
|
| 24 |
@InProceedings{huggingface:module,
|
| 25 |
+
title = {CodeBLEU: A Metric for Evaluating Code Generation},
|
| 26 |
+
authors={Sedykh, Ivan},
|
| 27 |
+
year={2022}
|
| 28 |
}
|
| 29 |
"""
|
| 30 |
|
| 31 |
# TODO: Add description of the module here
|
| 32 |
_DESCRIPTION = """\
|
| 33 |
+
This new module is an adaptation of the original CodeBLEU metric from CodexGLUE benchmark
|
| 34 |
+
for evaluating code generation.
|
| 35 |
"""
|
| 36 |
|
| 37 |
|
|
|
|
| 41 |
Args:
|
| 42 |
predictions: list of predictions to score. Each predictions
|
| 43 |
should be a string with tokens separated by spaces.
|
| 44 |
+
references: list of lists of references. Each list
|
| 45 |
+
should contain len(predictions) items.
|
| 46 |
+
lang: programming language in ['java','js','c_sharp','php','go','python','ruby']
|
| 47 |
+
tokenizer: tokenizer function str -> List[str], Defaults to lambda s: s.split()
|
| 48 |
+
params: str, weights for averaging(see CodeBLEU paper).
|
| 49 |
+
Defaults to equal weights "0.25,0.25,0.25,0.25".
|
| 50 |
Returns:
|
| 51 |
+
CodeBLEU: resulting score,
|
| 52 |
+
ngram_match_score: See paper CodeBLEU,
|
| 53 |
+
weighted_ngram_match_score: See paper CodeBLEU,
|
| 54 |
+
syntax_match_score: See paper CodeBLEU,
|
| 55 |
+
dataflow_match_score: See paper CodeBLEU,
|
| 56 |
Examples:
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
>>> codebleu = evaluate.load("my_new_module")
|
| 59 |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
| 60 |
>>> print(results)
|
| 61 |
{'accuracy': 1.0}
|
| 62 |
"""
|
| 63 |
|
| 64 |
# TODO: Define external resources urls if needed
|
| 65 |
+
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 66 |
|
| 67 |
|
| 68 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 69 |
+
class CodeBLEU(evaluate.Metric):
|
| 70 |
+
"""CodeBLEU metric from CodexGLUE"""
|
| 71 |
|
| 72 |
def _info(self):
|
| 73 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
|
| 78 |
citation=_CITATION,
|
| 79 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 80 |
# This defines the format of each prediction and reference
|
| 81 |
+
features=datasets.Features(
|
| 82 |
+
{
|
| 83 |
+
"predictions": datasets.Value("string"),
|
| 84 |
+
"references": datasets.Sequence(datasets.Value("string")),
|
| 85 |
+
}
|
| 86 |
+
),
|
| 87 |
# Homepage of the module for documentation
|
| 88 |
+
homepage="",
|
| 89 |
# Additional links to the codebase or references
|
| 90 |
+
codebase_urls=[],
|
| 91 |
+
reference_urls=[
|
| 92 |
+
"https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator",
|
| 93 |
+
"https://arxiv.org/abs/2009.10297",
|
| 94 |
+
],
|
| 95 |
)
|
| 96 |
|
| 97 |
def _download_and_prepare(self, dl_manager):
|
| 98 |
"""Optional: download external resources useful to compute the scores"""
|
| 99 |
# TODO: Download external resources if needed
|
| 100 |
+
# source CodeBLEU/parser/build.sh
|
| 101 |
pass
|
| 102 |
|
| 103 |
+
def _compute(
|
| 104 |
+
self,
|
| 105 |
+
predictions,
|
| 106 |
+
references,
|
| 107 |
+
lang,
|
| 108 |
+
tokenizer=None,
|
| 109 |
+
params="0.25,0.25,0.25,0.25",
|
| 110 |
+
):
|
| 111 |
"""Returns the scores"""
|
| 112 |
+
res = calc_codebleu(
|
| 113 |
+
predictions=predictions,
|
| 114 |
+
references=references,
|
| 115 |
+
lang=lang,
|
| 116 |
+
tokenizer=tokenizer,
|
| 117 |
+
params=params,
|
| 118 |
+
)
|
| 119 |
+
return res
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
git+https://github.com/huggingface/evaluate@a45df1eb9996eec64ec3282ebe554061cb366388
|
| 2 |
-
datasets~=2.0
|
|
|
|
|
|
| 1 |
git+https://github.com/huggingface/evaluate@a45df1eb9996eec64ec3282ebe554061cb366388
|
| 2 |
+
datasets~=2.0
|
| 3 |
+
tree-sitter==0.2.2
|