Spaces:
Build error
Build error
| import streamlit as st | |
| from huggingface_hub import snapshot_download | |
| from pdf2image import convert_from_bytes | |
| from PIL import Image | |
| import torch | |
| import os | |
| st.set_page_config(page_title="PDF Extract Kit QA", layout="centered") | |
| def load_model(): | |
| model_dir = snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir="./pdf_model", max_workers=4) | |
| # TODO: Load model from model_dir using correct logic, e.g.: | |
| # model = torch.load(os.path.join(model_dir, "model.pt")) | |
| # return model | |
| return model_dir # TEMP placeholder | |
| model_or_dir = load_model() | |
| def extract_answer(image, question): | |
| # TODO: Implement the actual inference using the model | |
| # For now, we return a placeholder | |
| return "Answering is not implemented yet. Replace this with model inference." | |
| st.title("π PDF Extract Kit: Question Answering") | |
| uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) | |
| question = st.text_input("Ask a question about the document") | |
| if uploaded_file and question: | |
| st.write("Reading and converting PDF...") | |
| images = convert_from_bytes(uploaded_file.read(), dpi=200) | |
| page_number = st.number_input("Select page", min_value=1, max_value=len(images), value=1, step=1) | |
| page_image = images[page_number - 1] | |
| st.image(page_image, caption=f"Page {page_number}") | |
| with st.spinner("Finding answer..."): | |
| answer = extract_answer(page_image, question) | |
| st.success("Answer:") | |
| st.write(answer) | |