Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,95 +1,99 @@
|
|
| 1 |
-
import requests
|
| 2 |
-
from collections import Counter
|
| 3 |
-
from transformers import pipeline
|
| 4 |
-
import nltk
|
| 5 |
-
from nltk.tokenize import word_tokenize
|
| 6 |
-
from nltk.corpus import stopwords
|
| 7 |
-
import string
|
| 8 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 9 |
-
import torch
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
nltk.
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
"
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from collections import Counter
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import nltk
|
| 5 |
+
from nltk.tokenize import word_tokenize
|
| 6 |
+
from nltk.corpus import stopwords
|
| 7 |
+
import string
|
| 8 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 9 |
+
import torch
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
nltk.data.path.append('/app/nltk_data')
|
| 13 |
+
os.environ['TRANSFORMERS_CACHE'] = '/app/transformers_cache'
|
| 14 |
+
|
| 15 |
+
nltk.download('punkt')
|
| 16 |
+
nltk.download('stopwords')
|
| 17 |
+
nltk.download('averaged_perceptron_tagger')
|
| 18 |
+
nltk.download('punkt_tab')
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# 1. Function for getting news via NewsAPI
|
| 22 |
+
def get_news(query, api_key, num_articles=5):
|
| 23 |
+
url = f'https://newsapi.org/v2/everything?q={query}&apiKey={api_key}&language=en&pageSize={num_articles}'
|
| 24 |
+
response = requests.get(url)
|
| 25 |
+
if response.status_code == 200:
|
| 26 |
+
return response.json()['articles']
|
| 27 |
+
return []
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# 2. Analyzing tone with Hugging Face
|
| 31 |
+
tone_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", revision="714eb0f")
|
| 32 |
+
|
| 33 |
+
def analyze_sentiment(text):
|
| 34 |
+
return tone_analyzer(text)[0]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# 3. Define category
|
| 38 |
+
|
| 39 |
+
category_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/tweet-topic-21-multi")
|
| 40 |
+
category_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/tweet-topic-21-multi")
|
| 41 |
+
labels = ['art', 'business', 'entertainment', 'environment', 'fashion', 'finance', 'food',
|
| 42 |
+
'health', 'law', 'media', 'military', 'music', 'politics', 'religion', 'sci/tech',
|
| 43 |
+
'sports', 'travel', 'weather', 'world news', 'none']
|
| 44 |
+
|
| 45 |
+
def classify_category(text):
|
| 46 |
+
inputs = category_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 47 |
+
outputs = category_model(**inputs)
|
| 48 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
| 49 |
+
return labels[predicted_class]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# 4. Summarization
|
| 53 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 54 |
+
|
| 55 |
+
def split_text(text, max_tokens=512):
|
| 56 |
+
words = text.split()
|
| 57 |
+
return [' '.join(words[i:i+max_tokens]) for i in range(0, len(words), max_tokens)]
|
| 58 |
+
|
| 59 |
+
def summarize_text(text):
|
| 60 |
+
chunks = split_text(text)
|
| 61 |
+
summaries = [summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] for chunk in chunks]
|
| 62 |
+
return ' '.join(summaries)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# 5. Search for trending words
|
| 66 |
+
def extract_trending_words(texts):
|
| 67 |
+
text = ' '.join(texts).lower()
|
| 68 |
+
words = word_tokenize(text)
|
| 69 |
+
words = [word for word in words if word not in stopwords.words('english') and word not in string.punctuation and len(word) > 1]
|
| 70 |
+
word_freq = Counter(words)
|
| 71 |
+
return word_freq.most_common(10)
|
| 72 |
+
|
| 73 |
+
# 6. The main process of analyzing news
|
| 74 |
+
def analyze_news(query, api_key, num_articles=5):
|
| 75 |
+
articles = get_news(query, api_key, num_articles)
|
| 76 |
+
|
| 77 |
+
if not articles:
|
| 78 |
+
return []
|
| 79 |
+
|
| 80 |
+
news_results = []
|
| 81 |
+
for article in articles:
|
| 82 |
+
title = article.get('title', 'No Title')
|
| 83 |
+
description = article.get('description', '') or ''
|
| 84 |
+
url = article.get('url', '#')
|
| 85 |
+
|
| 86 |
+
sentiment = analyze_sentiment(title + " " + description)['label']
|
| 87 |
+
category = classify_category(title + " " + description)
|
| 88 |
+
summary = summarize_text(title + " " + description)
|
| 89 |
+
|
| 90 |
+
news_results.append({
|
| 91 |
+
"title": title,
|
| 92 |
+
"url": url,
|
| 93 |
+
"sentiment": sentiment,
|
| 94 |
+
"category": category,
|
| 95 |
+
"summary": summary
|
| 96 |
+
})
|
| 97 |
+
|
| 98 |
+
return news_results
|
| 99 |
+
|