Handwritten_OCR / app.py
imperiusrex's picture
Create app.py
631b41e verified
raw
history blame
9.39 kB
# Import the GPU decorator for ZeroGPU Spaces
# This will be a no-op if the space is not configured for ZeroGPU
# but it is required for the specified hardware to work correctly.
from spaces import GPU
import os
import cv2
import numpy as np
import torch
import tempfile
import gradio as gr
from PIL import Image
from pdf2image import convert_from_path
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from paddleocr import PaddleOCR, TextDetection
# Set the GPU device if available
# The `spaces.GPU` decorator handles the dynamic GPU allocation, but we still need to
# specify the device for PyTorch and other GPU-enabled libraries.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# --- MODEL LOADING ---
# Load models globally so they are only initialized once when the app starts.
# Initialize the PaddleOCR detection model
# `use_angle_cls=False` is set for efficiency, as we are already using
# perspective warping to straighten the text.
print("Initializing PaddleOCR text detection model...")
try:
# Use the PaddleOCR class with a specific model for detection only
det_model = PaddleOCR(use_angle_cls=False, lang='en', use_gpu=torch.cuda.is_available(), show_log=False)
except Exception as e:
print(f"Error initializing PaddleOCR: {e}")
det_model = None
# Initialize the TrOCR recognition model and processor
print("Initializing TrOCR text recognition model...")
try:
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")
trocr_model.eval()
trocr_model.to(device)
except Exception as e:
print(f"Error initializing TrOCR: {e}")
trocr_model = None
trocr_processor = None
# Helper function to save a temp image
def save_temp_image(img):
"""Save an image array to a temporary file and return the path."""
temp_fd, temp_path = tempfile.mkstemp(suffix='.png')
cv2.imwrite(temp_path, img)
os.close(temp_fd)
return temp_path
def process_image_page(img):
"""
Process a single image to detect polygons, crop regions, and recognize text.
Returns a list of [box, text] for each cropped region and the original PIL image.
"""
if det_model is None or trocr_model is None:
raise RuntimeError("OCR models are not loaded. Please check logs for errors.")
# Convert OpenCV image (BGR numpy array) to PIL Image (RGB)
original_pil_image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# PaddleOCR's predict method takes a file path, so we'll save the image to a temp file
temp_image_path = save_temp_image(img)
# Detect polygons using PaddleOCR
# The `ocr` method in PaddleOCR returns both detection and recognition results.
# We will use it just for the detection polygons.
ocr_result = det_model.ocr(temp_image_path)
os.remove(temp_image_path)
arr = []
# The OCR result is a list of lists, where each inner list represents a text line.
# The first element is the bounding box coordinates.
for line in ocr_result[0]:
arr.append(line[0])
print(f"Detected {len(arr)} lines in this page.")
cropped_images = []
for box in arr:
box = np.array(box, dtype=np.float32)
# Compute width and height of the straightened image
width_a = np.linalg.norm(box[0] - box[1])
width_b = np.linalg.norm(box[2] - box[3])
height_a = np.linalg.norm(box[0] - box[3])
height_b = np.linalg.norm(box[1] - box[2])
width = int(max(width_a, width_b))
height = int(max(height_a, height_b))
dst_rect = np.array([
[0, 0],
[width - 1, 0],
[width - 1, height - 1],
[0, height - 1]
], dtype=np.float32)
# Perspective transform
M = cv2.getPerspectiveTransform(box, dst_rect)
warped = cv2.warpPerspective(img, M, (width, height))
cropped_images.append(warped)
# Reverse cropped images and corresponding boxes
cropped_images.reverse()
arr.reverse()
# Text recognition with TrOCR
results = []
for i, crop in enumerate(cropped_images):
image_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
pixel_values = trocr_processor(images=image_pil, return_tensors="pt").pixel_values.to(device)
with torch.no_grad():
generated_ids = trocr_model.generate(pixel_values, max_new_tokens=64)
generated_text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
results.append([arr[i], generated_text])
print(f"Recognized: {generated_text}")
return results, original_pil_image
def process_file_and_create_pdf(file):
"""
Main function to process a file (image or PDF) and return a path to a new PDF.
The @GPU decorator ensures this function is run on the GPU.
"""
if file is None:
return None, "Please upload a file."
temp_output_dir = tempfile.mkdtemp()
output_pdf_path = os.path.join(temp_output_dir, "ocr_results.pdf")
try:
if file.name.lower().endswith('.pdf'):
# Convert PDF to images
print(f"Converting PDF {file.name} to images...")
# Use `poppler_path` if poppler is installed on the system, otherwise
# it might be necessary to install it via a `packages.txt` file.
# Here we assume it's available.
images = convert_from_path(file.name, dpi=300)
c = canvas.Canvas(output_pdf_path, pagesize=letter)
width, height = letter
for page_num, page in enumerate(images):
print(f"\nProcessing page {page_num + 1}")
img_cv = cv2.cvtColor(np.array(page), cv2.COLOR_RGB2BGR)
results, original_image = process_image_page(img_cv)
c.setFont("Helvetica-Bold", 14)
c.drawString(50, height - 40, f"Page {page_num + 1} - OCR Results")
y = height - 60
c.setFont("Helvetica", 12)
for _, text in results:
c.drawString(50, y, text)
y -= 15
if y < 50:
c.showPage()
c.setFont("Helvetica-Bold", 14)
c.drawString(50, height - 40, f"Page {page_num + 1} (cont.) - OCR Results")
y = height - 60
c.showPage()
c.save()
else: # Handle single image file
img_cv = cv2.imread(file.name)
if img_cv is None:
raise ValueError("Failed to load image.")
results, original_image = process_image_page(img_cv)
c = canvas.Canvas(output_pdf_path, pagesize=letter)
width, height = letter
c.setFont("Helvetica-Bold", 14)
c.drawString(50, height - 40, "Image OCR Results")
# The input file from Gradio is a temp file that will be cleaned up.
# We can't display it directly in the PDF from its path.
# To draw it in the PDF, we save it to a new temporary path.
temp_img_path = os.path.join(temp_output_dir, "original_image.png")
original_image.save(temp_img_path)
# Draw the image on the PDF
c.drawImage(temp_img_path, 50, height - 300, width=200, preserveAspectRatio=True)
y = height - 350
c.setFont("Helvetica", 12)
for _, text in results:
c.drawString(50, y, text)
y -= 15
if y < 50:
c.showPage()
c.setFont("Helvetica", 12)
y = height - 50
c.save()
os.remove(temp_img_path)
return output_pdf_path
except Exception as e:
print(f"An error occurred: {e}")
# Clean up temporary directory on error
# shutil.rmtree(temp_output_dir)
return None
# Gradio Interface
# The `@GPU` decorator is used here to ensure this function runs on a GPU.
@GPU
def process_file_for_gradio(file):
# This wrapper function is needed because Gradio's `File` component passes a temp file.
# We call our main processing function and return the path to the output PDF.
output_path = process_file_and_create_pdf(file)
if output_path is None:
return None
return output_path
demo = gr.Interface(
fn=process_file_for_gradio,
inputs=gr.File(label="Upload an Image (PNG, JPG) or a PDF", file_types=['.png', '.jpg', '.jpeg', '.pdf']),
outputs=gr.File(label="Download OCR Results PDF"),
title="OCR App with PaddleOCR and TrOCR",
description="Upload an image or a multi-page PDF to get an output PDF with the recognized text from each page.",
examples=[
# Here you can provide paths to example files in your repo
# "example.png",
# "example.pdf"
]
)
if __name__ == "__main__":
# You will need to set the hardware configuration in the `README.md` file
# of your Hugging Face Space for the GPU to be available.
demo.launch()