Spaces:
Runtime error
Runtime error
update
Browse files- .gitattributes +3 -0
- .gitignore +15 -0
- Dockerfile +32 -0
- README.md +4 -7
- examples/webrtcvad/vad.py +173 -0
- main.py +135 -0
- project_settings.py +16 -0
- requirements.txt +6 -0
- toolbox/__init__.py +6 -0
- toolbox/webrtcvad/__init__.py +6 -0
- toolbox/webrtcvad/vad.py +233 -0
- webrtcvad_examples.json +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.xlsx filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.xlsx filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.git/
|
| 3 |
+
.idea/
|
| 4 |
+
|
| 5 |
+
data/
|
| 6 |
+
pretrained_models/
|
| 7 |
+
temp/
|
| 8 |
+
|
| 9 |
+
**/cache/
|
| 10 |
+
**/__pycache__/
|
| 11 |
+
|
| 12 |
+
**/*.env
|
| 13 |
+
**/*.mp3
|
| 14 |
+
**/*.png
|
| 15 |
+
**/*.xlsx
|
Dockerfile
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.8
|
| 5 |
+
|
| 6 |
+
WORKDIR /code
|
| 7 |
+
|
| 8 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 9 |
+
|
| 10 |
+
RUN pip install --upgrade pip
|
| 11 |
+
|
| 12 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 13 |
+
|
| 14 |
+
# Set up a new user named "user" with user ID 1000
|
| 15 |
+
RUN useradd -m -u 1000 user
|
| 16 |
+
|
| 17 |
+
# Switch to the "user" user
|
| 18 |
+
USER user
|
| 19 |
+
|
| 20 |
+
RUN apt-get install -y git
|
| 21 |
+
|
| 22 |
+
# Set home to the user's home directory
|
| 23 |
+
ENV HOME=/home/user \
|
| 24 |
+
PATH=/home/user/.local/bin:$PATH
|
| 25 |
+
|
| 26 |
+
# Set the working directory to the user's home directory
|
| 27 |
+
WORKDIR $HOME/app
|
| 28 |
+
|
| 29 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 30 |
+
COPY --chown=user . $HOME/app
|
| 31 |
+
|
| 32 |
+
CMD ["python", "main.py"]
|
README.md
CHANGED
|
@@ -1,13 +1,10 @@
|
|
| 1 |
---
|
| 2 |
title: Voice Activity Detection
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
sdk_version: 4.16.0
|
| 8 |
-
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: Voice Activity Detection
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: gray
|
| 6 |
+
sdk: docker
|
|
|
|
|
|
|
| 7 |
pinned: false
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
examples/webrtcvad/vad.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import collections
|
| 5 |
+
import contextlib
|
| 6 |
+
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
from scipy.io import wavfile
|
| 10 |
+
import wave
|
| 11 |
+
import webrtcvad
|
| 12 |
+
|
| 13 |
+
from project_settings import project_path
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_args():
|
| 17 |
+
parser = argparse.ArgumentParser()
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
"--wav_file",
|
| 20 |
+
default=(project_path / "data/3300999628164249998.wav").as_posix(),
|
| 21 |
+
type=str,
|
| 22 |
+
)
|
| 23 |
+
parser.add_argument(
|
| 24 |
+
"--agg",
|
| 25 |
+
default=3,
|
| 26 |
+
type=int,
|
| 27 |
+
help="The level of aggressiveness of the VAD: [0-3]'"
|
| 28 |
+
)
|
| 29 |
+
parser.add_argument(
|
| 30 |
+
"--frame_duration_ms",
|
| 31 |
+
default=30,
|
| 32 |
+
type=int,
|
| 33 |
+
)
|
| 34 |
+
parser.add_argument(
|
| 35 |
+
"--silence_duration_threshold",
|
| 36 |
+
default=0.3,
|
| 37 |
+
type=float,
|
| 38 |
+
help="minimum silence duration, in seconds."
|
| 39 |
+
)
|
| 40 |
+
args = parser.parse_args()
|
| 41 |
+
return args
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def read_wave(path):
|
| 45 |
+
with contextlib.closing(wave.open(path, 'rb')) as wf:
|
| 46 |
+
num_channels = wf.getnchannels()
|
| 47 |
+
assert num_channels == 1
|
| 48 |
+
sample_width = wf.getsampwidth()
|
| 49 |
+
assert sample_width == 2
|
| 50 |
+
sample_rate = wf.getframerate()
|
| 51 |
+
assert sample_rate in (8000, 16000, 32000, 48000)
|
| 52 |
+
pcm_data = wf.readframes(wf.getnframes())
|
| 53 |
+
return pcm_data, sample_rate
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Frame(object):
|
| 57 |
+
def __init__(self, audio_bytes, timestamp, duration):
|
| 58 |
+
self.audio_bytes = audio_bytes
|
| 59 |
+
self.timestamp = timestamp
|
| 60 |
+
self.duration = duration
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def frame_generator(frame_duration_ms, audio, sample_rate):
|
| 64 |
+
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
|
| 65 |
+
offset = 0
|
| 66 |
+
timestamp = 0.0
|
| 67 |
+
duration = (float(n) / sample_rate) / 2.0
|
| 68 |
+
while offset + n < len(audio):
|
| 69 |
+
yield Frame(audio[offset:offset + n], timestamp, duration)
|
| 70 |
+
timestamp += duration
|
| 71 |
+
offset += n
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def vad_collector(sample_rate, frame_duration_ms,
|
| 75 |
+
padding_duration_ms, vad, frames):
|
| 76 |
+
|
| 77 |
+
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
|
| 78 |
+
ring_buffer = collections.deque(maxlen=num_padding_frames)
|
| 79 |
+
triggered = False
|
| 80 |
+
|
| 81 |
+
voiced_frames = []
|
| 82 |
+
for frame in frames:
|
| 83 |
+
is_speech = vad.is_speech(frame.audio_bytes, sample_rate)
|
| 84 |
+
|
| 85 |
+
if not triggered:
|
| 86 |
+
ring_buffer.append((frame, is_speech))
|
| 87 |
+
num_voiced = len([f for f, speech in ring_buffer if speech])
|
| 88 |
+
|
| 89 |
+
if num_voiced > 0.9 * ring_buffer.maxlen:
|
| 90 |
+
triggered = True
|
| 91 |
+
|
| 92 |
+
for f, _ in ring_buffer:
|
| 93 |
+
voiced_frames.append(f)
|
| 94 |
+
ring_buffer.clear()
|
| 95 |
+
else:
|
| 96 |
+
voiced_frames.append(frame)
|
| 97 |
+
ring_buffer.append((frame, is_speech))
|
| 98 |
+
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
|
| 99 |
+
if num_unvoiced > 0.9 * ring_buffer.maxlen:
|
| 100 |
+
triggered = False
|
| 101 |
+
yield [b''.join([f.audio_bytes for f in voiced_frames]),
|
| 102 |
+
voiced_frames[0].timestamp, voiced_frames[-1].timestamp]
|
| 103 |
+
ring_buffer.clear()
|
| 104 |
+
voiced_frames = []
|
| 105 |
+
|
| 106 |
+
if voiced_frames:
|
| 107 |
+
yield [b''.join([f.audio_bytes for f in voiced_frames]),
|
| 108 |
+
voiced_frames[0].timestamp, voiced_frames[-1].timestamp]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def main():
|
| 112 |
+
args = get_args()
|
| 113 |
+
|
| 114 |
+
vad = webrtcvad.Vad(mode=args.agg)
|
| 115 |
+
|
| 116 |
+
audio_pcm_data, sample_rate = read_wave(args.wav_file)
|
| 117 |
+
_, audio_data = wavfile.read(args.wav_file)
|
| 118 |
+
# audio_data_ = bytes(audio_data)
|
| 119 |
+
|
| 120 |
+
frames = frame_generator(
|
| 121 |
+
frame_duration_ms=args.frame_duration_ms,
|
| 122 |
+
audio=audio_pcm_data, sample_rate=sample_rate
|
| 123 |
+
)
|
| 124 |
+
frames = list(frames)
|
| 125 |
+
|
| 126 |
+
segments = vad_collector(sample_rate, args.frame_duration_ms, 300, vad, frames)
|
| 127 |
+
segments = list(segments)
|
| 128 |
+
|
| 129 |
+
vad_segments = list()
|
| 130 |
+
timestamp_start = 0.0
|
| 131 |
+
timestamp_end = 0.0
|
| 132 |
+
|
| 133 |
+
last_i = len(segments) - 1
|
| 134 |
+
for i, segment in enumerate(segments):
|
| 135 |
+
start = round(segment[1], 4)
|
| 136 |
+
end = round(segment[2], 4)
|
| 137 |
+
|
| 138 |
+
flag_first = i == 0
|
| 139 |
+
flag_last = i == last_i
|
| 140 |
+
if flag_first:
|
| 141 |
+
timestamp_start = start
|
| 142 |
+
timestamp_end = end
|
| 143 |
+
continue
|
| 144 |
+
|
| 145 |
+
if timestamp_start:
|
| 146 |
+
sil_duration = start - timestamp_end
|
| 147 |
+
if sil_duration > args.silence_duration_threshold:
|
| 148 |
+
vad_segments.append([timestamp_start, timestamp_end])
|
| 149 |
+
timestamp_start = start
|
| 150 |
+
timestamp_end = end
|
| 151 |
+
if flag_last:
|
| 152 |
+
vad_segments.append([timestamp_start, timestamp_end])
|
| 153 |
+
else:
|
| 154 |
+
timestamp_end = end
|
| 155 |
+
|
| 156 |
+
print(vad_segments)
|
| 157 |
+
|
| 158 |
+
time = np.arange(0, len(audio_data)) / sample_rate
|
| 159 |
+
|
| 160 |
+
plt.figure(figsize=(12, 5))
|
| 161 |
+
|
| 162 |
+
plt.plot(time, audio_data / 32768, color='b')
|
| 163 |
+
|
| 164 |
+
for start, end in vad_segments:
|
| 165 |
+
plt.axvline(x=start, ymin=0.25, ymax=0.75, color='g', linestyle='--', label='开始端点') # 标记开始端点
|
| 166 |
+
plt.axvline(x=end, ymin=0.25, ymax=0.75, color='r', linestyle='--', label='结束端点') # 标记结束端点
|
| 167 |
+
|
| 168 |
+
plt.show()
|
| 169 |
+
return
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
if __name__ == '__main__':
|
| 173 |
+
main()
|
main.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import json
|
| 5 |
+
import platform
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
from project_settings import project_path, temp_directory
|
| 14 |
+
from toolbox.webrtcvad.vad import WebRTCVad
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_args():
|
| 18 |
+
parser = argparse.ArgumentParser()
|
| 19 |
+
parser.add_argument(
|
| 20 |
+
"--webrtcvad_examples_file",
|
| 21 |
+
default=(project_path / "webrtcvad_examples.json").as_posix(),
|
| 22 |
+
type=str
|
| 23 |
+
)
|
| 24 |
+
args = parser.parse_args()
|
| 25 |
+
return args
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
webrtcvad: WebRTCVad = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def click_webrtcvad_button(audio: Tuple[int, np.ndarray],
|
| 32 |
+
agg: int = 3,
|
| 33 |
+
frame_duration_ms: int = 30,
|
| 34 |
+
padding_duration_ms: int = 300,
|
| 35 |
+
silence_duration_threshold: float = 0.3,
|
| 36 |
+
):
|
| 37 |
+
global webrtcvad
|
| 38 |
+
|
| 39 |
+
sample_rate, signal = audio
|
| 40 |
+
|
| 41 |
+
webrtcvad = WebRTCVad(agg=int(agg),
|
| 42 |
+
frame_duration_ms=frame_duration_ms,
|
| 43 |
+
padding_duration_ms=padding_duration_ms,
|
| 44 |
+
silence_duration_threshold=silence_duration_threshold,
|
| 45 |
+
sample_rate=sample_rate,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
vad_segments = list()
|
| 49 |
+
segments = webrtcvad.vad(signal)
|
| 50 |
+
vad_segments += segments
|
| 51 |
+
segments = webrtcvad.last_vad_segments()
|
| 52 |
+
vad_segments += segments
|
| 53 |
+
|
| 54 |
+
time = np.arange(0, len(signal)) / sample_rate
|
| 55 |
+
plt.figure(figsize=(12, 5))
|
| 56 |
+
plt.plot(time, signal / 32768, color='b')
|
| 57 |
+
for start, end in vad_segments:
|
| 58 |
+
plt.axvline(x=start, ymin=0.25, ymax=0.75, color='g', linestyle='--', label='开始端点') # 标记开始端点
|
| 59 |
+
plt.axvline(x=end, ymin=0.25, ymax=0.75, color='r', linestyle='--', label='结束端点') # 标记结束端点
|
| 60 |
+
|
| 61 |
+
temp_image_file = temp_directory / "temp.jpg"
|
| 62 |
+
plt.savefig(temp_image_file)
|
| 63 |
+
image = Image.open(open(temp_image_file, "rb"))
|
| 64 |
+
|
| 65 |
+
return image, vad_segments
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def main():
|
| 69 |
+
args = get_args()
|
| 70 |
+
|
| 71 |
+
brief_description = """
|
| 72 |
+
## Voice Activity Detection
|
| 73 |
+
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
# examples
|
| 77 |
+
with open(args.webrtcvad_examples_file, "r", encoding="utf-8") as f:
|
| 78 |
+
webrtcvad_examples = json.load(f)
|
| 79 |
+
|
| 80 |
+
# ui
|
| 81 |
+
with gr.Blocks() as blocks:
|
| 82 |
+
gr.Markdown(value=brief_description)
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
with gr.Column(scale=5):
|
| 86 |
+
with gr.Tabs():
|
| 87 |
+
with gr.TabItem("webrtcvad"):
|
| 88 |
+
gr.Markdown(value="")
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column(scale=1):
|
| 92 |
+
webrtcvad_wav = gr.Audio(label="wav")
|
| 93 |
+
|
| 94 |
+
with gr.Row():
|
| 95 |
+
webrtcvad_agg = gr.Dropdown(choices=[1, 2, 3], value=3, label="agg")
|
| 96 |
+
webrtcvad_frame_duration_ms = gr.Slider(minimum=0, maximum=100, value=30, label="frame_duration_ms")
|
| 97 |
+
|
| 98 |
+
with gr.Row():
|
| 99 |
+
webrtcvad_padding_duration_ms = gr.Slider(minimum=0, maximum=1000, value=300, label="padding_duration_ms")
|
| 100 |
+
webrtcvad_silence_duration_threshold = gr.Slider(minimum=0, maximum=1.0, value=0.3, step=0.1, label="silence_duration_threshold")
|
| 101 |
+
|
| 102 |
+
webrtcvad_button = gr.Button("retrieval", variant="primary")
|
| 103 |
+
|
| 104 |
+
with gr.Column(scale=1):
|
| 105 |
+
webrtcvad_image = gr.Image(label="image", height=300, width=720, show_label=False)
|
| 106 |
+
webrtcvad_end_points = gr.TextArea(label="end_points", max_lines=35)
|
| 107 |
+
|
| 108 |
+
gr.Examples(
|
| 109 |
+
examples=webrtcvad_examples,
|
| 110 |
+
inputs=[
|
| 111 |
+
webrtcvad_wav, webrtcvad_agg, webrtcvad_frame_duration_ms,
|
| 112 |
+
webrtcvad_padding_duration_ms, webrtcvad_silence_duration_threshold
|
| 113 |
+
],
|
| 114 |
+
outputs=[webrtcvad_image, webrtcvad_end_points],
|
| 115 |
+
fn=click_webrtcvad_button
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# click event
|
| 119 |
+
webrtcvad_button.click(
|
| 120 |
+
click_webrtcvad_button,
|
| 121 |
+
inputs=[
|
| 122 |
+
webrtcvad_wav, webrtcvad_agg, webrtcvad_frame_duration_ms,
|
| 123 |
+
webrtcvad_padding_duration_ms, webrtcvad_silence_duration_threshold
|
| 124 |
+
],
|
| 125 |
+
outputs=[webrtcvad_image, webrtcvad_end_points],
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
blocks.queue().launch(
|
| 129 |
+
share=False if platform.system() == "Windows" else False
|
| 130 |
+
)
|
| 131 |
+
return
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
main()
|
project_settings.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
project_path = os.path.abspath(os.path.dirname(__file__))
|
| 8 |
+
project_path = Path(project_path)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
temp_directory = project_path / "temp"
|
| 12 |
+
temp_directory.mkdir(exist_ok=True)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
if __name__ == '__main__':
|
| 16 |
+
pass
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.1.2
|
| 2 |
+
webrtcvad==2.0.10
|
| 3 |
+
wave==0.0.2
|
| 4 |
+
matplotlib==3.7.4
|
| 5 |
+
scipy==1.10.1
|
| 6 |
+
pillow==10.2.0
|
toolbox/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/webrtcvad/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/webrtcvad/vad.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import collections
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
from scipy.io import wavfile
|
| 10 |
+
import webrtcvad
|
| 11 |
+
|
| 12 |
+
from project_settings import project_path
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class Frame(object):
|
| 16 |
+
def __init__(self, signal: np.ndarray, timestamp, duration):
|
| 17 |
+
self.signal = signal
|
| 18 |
+
self.timestamp = timestamp
|
| 19 |
+
self.duration = duration
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class WebRTCVad(object):
|
| 23 |
+
def __init__(self,
|
| 24 |
+
agg: int = 3,
|
| 25 |
+
frame_duration_ms: int = 30,
|
| 26 |
+
padding_duration_ms: int = 300,
|
| 27 |
+
silence_duration_threshold: float = 0.3,
|
| 28 |
+
sample_rate: int = 8000
|
| 29 |
+
):
|
| 30 |
+
self.agg = agg
|
| 31 |
+
self.frame_duration_ms = frame_duration_ms
|
| 32 |
+
self.padding_duration_ms = padding_duration_ms
|
| 33 |
+
self.silence_duration_threshold = silence_duration_threshold
|
| 34 |
+
self.sample_rate = sample_rate
|
| 35 |
+
|
| 36 |
+
self._vad = webrtcvad.Vad(mode=agg)
|
| 37 |
+
|
| 38 |
+
# frames
|
| 39 |
+
self.frame_length = int(sample_rate * (frame_duration_ms / 1000.0))
|
| 40 |
+
self.frame_timestamp = 0.0
|
| 41 |
+
self.signal_cache = None
|
| 42 |
+
|
| 43 |
+
# segments
|
| 44 |
+
self.num_padding_frames = int(padding_duration_ms / frame_duration_ms)
|
| 45 |
+
self.ring_buffer = collections.deque(maxlen=self.num_padding_frames)
|
| 46 |
+
self.triggered = False
|
| 47 |
+
self.voiced_frames: List[Frame] = list()
|
| 48 |
+
self.segments = list()
|
| 49 |
+
|
| 50 |
+
# vad segments
|
| 51 |
+
self.is_first_segment = True
|
| 52 |
+
self.timestamp_start = 0.0
|
| 53 |
+
self.timestamp_end = 0.0
|
| 54 |
+
|
| 55 |
+
def signal_to_frames(self, signal: np.ndarray):
|
| 56 |
+
frames = list()
|
| 57 |
+
|
| 58 |
+
l = len(signal)
|
| 59 |
+
|
| 60 |
+
duration = (float(self.frame_length) / self.sample_rate)
|
| 61 |
+
|
| 62 |
+
for offset in range(0, l, self.frame_length):
|
| 63 |
+
sub_signal = signal[offset:offset+self.frame_length]
|
| 64 |
+
|
| 65 |
+
frame = Frame(sub_signal, self.frame_timestamp, duration)
|
| 66 |
+
self.frame_timestamp += duration
|
| 67 |
+
|
| 68 |
+
frames.append(frame)
|
| 69 |
+
return frames
|
| 70 |
+
|
| 71 |
+
def segments_generator(self, signal: np.ndarray):
|
| 72 |
+
# signal rounding
|
| 73 |
+
if self.signal_cache is not None:
|
| 74 |
+
signal = np.concatenate([self.signal_cache, signal])
|
| 75 |
+
|
| 76 |
+
rest = len(signal) % self.frame_length
|
| 77 |
+
|
| 78 |
+
if rest == 0:
|
| 79 |
+
self.signal_cache = None
|
| 80 |
+
signal_ = signal
|
| 81 |
+
else:
|
| 82 |
+
self.signal_cache = signal[-rest:]
|
| 83 |
+
signal_ = signal[:-rest]
|
| 84 |
+
|
| 85 |
+
# frames
|
| 86 |
+
frames = self.signal_to_frames(signal_)
|
| 87 |
+
|
| 88 |
+
for frame in frames:
|
| 89 |
+
audio_bytes = bytes(frame.signal)
|
| 90 |
+
is_speech = self._vad.is_speech(audio_bytes, self.sample_rate)
|
| 91 |
+
|
| 92 |
+
if not self.triggered:
|
| 93 |
+
self.ring_buffer.append((frame, is_speech))
|
| 94 |
+
num_voiced = len([f for f, speech in self.ring_buffer if speech])
|
| 95 |
+
|
| 96 |
+
if num_voiced > 0.9 * self.ring_buffer.maxlen:
|
| 97 |
+
self.triggered = True
|
| 98 |
+
|
| 99 |
+
for f, _ in self.ring_buffer:
|
| 100 |
+
self.voiced_frames.append(f)
|
| 101 |
+
self.ring_buffer.clear()
|
| 102 |
+
else:
|
| 103 |
+
self.voiced_frames.append(frame)
|
| 104 |
+
self.ring_buffer.append((frame, is_speech))
|
| 105 |
+
num_unvoiced = len([f for f, speech in self.ring_buffer if not speech])
|
| 106 |
+
if num_unvoiced > 0.9 * self.ring_buffer.maxlen:
|
| 107 |
+
self.triggered = False
|
| 108 |
+
segment = [
|
| 109 |
+
np.concatenate([f.signal for f in self.voiced_frames]),
|
| 110 |
+
self.voiced_frames[0].timestamp,
|
| 111 |
+
self.voiced_frames[-1].timestamp
|
| 112 |
+
]
|
| 113 |
+
yield segment
|
| 114 |
+
self.ring_buffer.clear()
|
| 115 |
+
self.voiced_frames = []
|
| 116 |
+
|
| 117 |
+
def vad_segments_generator(self, segments_generator):
|
| 118 |
+
segments = list(segments_generator)
|
| 119 |
+
|
| 120 |
+
for i, segment in enumerate(segments):
|
| 121 |
+
start = round(segment[1], 4)
|
| 122 |
+
end = round(segment[2], 4)
|
| 123 |
+
|
| 124 |
+
if self.is_first_segment:
|
| 125 |
+
self.timestamp_start = start
|
| 126 |
+
self.timestamp_end = end
|
| 127 |
+
self.is_first_segment = False
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
if self.timestamp_start:
|
| 131 |
+
sil_duration = start - self.timestamp_end
|
| 132 |
+
if sil_duration > self.silence_duration_threshold:
|
| 133 |
+
vad_segment = [self.timestamp_start, self.timestamp_end]
|
| 134 |
+
yield vad_segment
|
| 135 |
+
|
| 136 |
+
self.timestamp_start = start
|
| 137 |
+
self.timestamp_end = end
|
| 138 |
+
else:
|
| 139 |
+
self.timestamp_end = end
|
| 140 |
+
|
| 141 |
+
def vad(self, signal: np.ndarray) -> List[list]:
|
| 142 |
+
segments = self.segments_generator(signal)
|
| 143 |
+
vad_segments = self.vad_segments_generator(segments)
|
| 144 |
+
vad_segments = list(vad_segments)
|
| 145 |
+
return vad_segments
|
| 146 |
+
|
| 147 |
+
def last_vad_segments(self) -> List[list]:
|
| 148 |
+
# last segments
|
| 149 |
+
if len(self.voiced_frames) == 0:
|
| 150 |
+
segments = []
|
| 151 |
+
else:
|
| 152 |
+
segment = [
|
| 153 |
+
np.concatenate([f.signal for f in self.voiced_frames]),
|
| 154 |
+
self.voiced_frames[0].timestamp,
|
| 155 |
+
self.voiced_frames[-1].timestamp
|
| 156 |
+
]
|
| 157 |
+
segments = [segment]
|
| 158 |
+
|
| 159 |
+
# last vad segments
|
| 160 |
+
vad_segments = self.vad_segments_generator(segments)
|
| 161 |
+
vad_segments = list(vad_segments)
|
| 162 |
+
|
| 163 |
+
vad_segments = vad_segments + [[self.timestamp_start, self.timestamp_end]]
|
| 164 |
+
return vad_segments
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def get_args():
|
| 168 |
+
parser = argparse.ArgumentParser()
|
| 169 |
+
parser.add_argument(
|
| 170 |
+
"--wav_file",
|
| 171 |
+
default=(project_path / "data/3300999628164249998.wav").as_posix(),
|
| 172 |
+
type=str,
|
| 173 |
+
)
|
| 174 |
+
parser.add_argument(
|
| 175 |
+
"--agg",
|
| 176 |
+
default=3,
|
| 177 |
+
type=int,
|
| 178 |
+
help="The level of aggressiveness of the VAD: [0-3]'"
|
| 179 |
+
)
|
| 180 |
+
parser.add_argument(
|
| 181 |
+
"--frame_duration_ms",
|
| 182 |
+
default=30,
|
| 183 |
+
type=int,
|
| 184 |
+
)
|
| 185 |
+
parser.add_argument(
|
| 186 |
+
"--silence_duration_threshold",
|
| 187 |
+
default=0.3,
|
| 188 |
+
type=float,
|
| 189 |
+
help="minimum silence duration, in seconds."
|
| 190 |
+
)
|
| 191 |
+
args = parser.parse_args()
|
| 192 |
+
return args
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
SAMPLE_RATE = 8000
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def main():
|
| 199 |
+
args = get_args()
|
| 200 |
+
|
| 201 |
+
w_vad = WebRTCVad(sample_rate=SAMPLE_RATE)
|
| 202 |
+
|
| 203 |
+
sample_rate, signal = wavfile.read(args.wav_file)
|
| 204 |
+
if SAMPLE_RATE != sample_rate:
|
| 205 |
+
raise AssertionError
|
| 206 |
+
|
| 207 |
+
vad_segments = list()
|
| 208 |
+
|
| 209 |
+
segments = w_vad.vad(signal)
|
| 210 |
+
vad_segments += segments
|
| 211 |
+
for segment in segments:
|
| 212 |
+
print(segment)
|
| 213 |
+
|
| 214 |
+
# last vad segment
|
| 215 |
+
segments = w_vad.last_vad_segments()
|
| 216 |
+
vad_segments += segments
|
| 217 |
+
for segment in segments:
|
| 218 |
+
print(segment)
|
| 219 |
+
|
| 220 |
+
# plot
|
| 221 |
+
time = np.arange(0, len(signal)) / sample_rate
|
| 222 |
+
plt.figure(figsize=(12, 5))
|
| 223 |
+
plt.plot(time, signal / 32768, color='b')
|
| 224 |
+
for start, end in vad_segments:
|
| 225 |
+
plt.axvline(x=start, ymin=0.25, ymax=0.75, color='g', linestyle='--', label='开始端点') # 标记开始端点
|
| 226 |
+
plt.axvline(x=end, ymin=0.25, ymax=0.75, color='r', linestyle='--', label='结束端点') # 标记结束端点
|
| 227 |
+
|
| 228 |
+
plt.show()
|
| 229 |
+
return
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
if __name__ == '__main__':
|
| 233 |
+
main()
|
webrtcvad_examples.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
[
|
| 3 |
+
"data/early_media/3300999628164249998.wav"
|
| 4 |
+
],
|
| 5 |
+
[
|
| 6 |
+
"data/early_media/3300999628164852605.wav"
|
| 7 |
+
]
|
| 8 |
+
]
|