Spaces:
Runtime error
Runtime error
| try: | |
| import detectron2 | |
| except: | |
| import os | |
| os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
| from matplotlib.pyplot import axis | |
| import gradio as gr | |
| import requests | |
| import numpy as np | |
| from torch import nn | |
| import requests | |
| import torch | |
| import detectron2 | |
| from detectron2 import model_zoo | |
| from detectron2.engine import DefaultPredictor | |
| from detectron2.config import get_cfg | |
| from detectron2.utils.visualizer import Visualizer | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.utils.visualizer import ColorMode | |
| model_path = 'model_final.pth' | |
| cfg = get_cfg() | |
| cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
| cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.6 | |
| cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 | |
| cfg.MODEL.WEIGHTS = model_path | |
| if not torch.cuda.is_available(): | |
| cfg.MODEL.DEVICE='cpu' | |
| predictor = DefaultPredictor(cfg) | |
| my_metadata = MetadataCatalog.get("car_dataset_val") | |
| my_metadata.thing_classes = ["damage"] | |
| def merge_segment(pred_segm): | |
| merge_dict = {} | |
| for i in range(len(pred_segm)): | |
| merge_dict[i] = [] | |
| for j in range(i+1,len(pred_segm)): | |
| if torch.sum(pred_segm[i]*pred_segm[j])>0: | |
| merge_dict[i].append(j) | |
| to_delete = [] | |
| for key in merge_dict: | |
| for element in merge_dict[key]: | |
| to_delete.append(element) | |
| for element in to_delete: | |
| merge_dict.pop(element,None) | |
| empty_delete = [] | |
| for key in merge_dict: | |
| if merge_dict[key] == []: | |
| empty_delete.append(key) | |
| for element in empty_delete: | |
| merge_dict.pop(element,None) | |
| for key in merge_dict: | |
| for element in merge_dict[key]: | |
| pred_segm[key]+=pred_segm[element] | |
| except_elem = list(set(to_delete)) | |
| new_indexes = list(range(len(pred_segm))) | |
| for elem in except_elem: | |
| new_indexes.remove(elem) | |
| return pred_segm[new_indexes] | |
| def inference(image): | |
| print(image.height) | |
| height = image.height | |
| # img = np.array(image.resize((500, height))) | |
| img = np.array(image) | |
| outputs = predictor(img) | |
| out_dict = outputs["instances"].to("cpu").get_fields() | |
| new_inst = detectron2.structures.Instances((1024,1024)) | |
| new_inst.set('pred_masks',merge_segment(out_dict['pred_masks'])) | |
| v = Visualizer(img[:, :, ::-1], | |
| metadata=my_metadata, | |
| scale=0.5, | |
| instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models | |
| ) | |
| # v = Visualizer(img,scale=1.2) | |
| #print(outputs["instances"].to('cpu')) | |
| out = v.draw_instance_predictions(new_inst) | |
| return out.get_image()[:, :, ::-1] | |
| title = "Detectron2 Car damage Detection" | |
| description = "This demo introduces an interactive playground for our trained Detectron2 model." | |
| gr.Interface( | |
| inference, | |
| [gr.inputs.Image(type="pil", label="Input")], | |
| gr.outputs.Image(type="numpy", label="Output"), | |
| title=title, | |
| description=description, | |
| examples=[]).launch() |