File size: 8,905 Bytes
583c33f 74cb695 3ebc4f1 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 74cb695 583c33f 3ebc4f1 583c33f 74cb695 583c33f 74cb695 583c33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
MODEL_ID = "internlm/CapRL-3B"
DEFAULT_PROMPT = "Describe the image in detail."
MAX_NEW_TOKENS = 4096
# Defaults for UI
DEFAULT_IMAGE_PATH = "./examples/1909.png"
DEFAULT_CAPTION = """The image is a bar chart from the Pew Research Center that illustrates how older Republicans and Republican leaners view Donald Trump, specifically focusing on how many describe the phrase "fights for what I believe in" to describe Trump. The data is based on a survey conducted from February 4-15, 2020, among U.S. adults who identify as Republicans or Republican-leaning independents.
### Title:
Older Republicans especially likely to see Trump as fighting for their beliefs
### Main Question:
Among Republicans and Republican leaners, % who say the phrase 'fights for what I believe in' describes Trump ...
### Data Breakdown:
1. **All Rep/Lean Rep (Overall):**
- Very well: 51%
- Fairly well: 36%
- NET: 87%
2. **Ages 18-29:**
- Very well: 31%
- Fairly well: 45%
- NET: 76%
3. **30-49:**
- Very well: 41%
- Fairly well: 42%
- NET: 82%
4. **50-64:**
- Very well: 58%
- Fairly well: 33%
- NET: 92%
5. **65+:**
- Very well: 68%
- Fairly well: 26%
- NET: 94%
6. **Postgrad:**
- Very well: 42%
- Fairly well: 38%
- NET: 80%
7. **College grad:**
- Very well: 45%
- Fairly well: 40%
- NET: 85%
8. **Some college:**
- Very well: 51%
- Fairly well: 36%
- NET: 87%
9. **HS or less:**
- Very well: 56%
- Fairly well: 33%
- NET: 89
10. **Conserv (Conservative):**
- Very well: 63%
- Fairly well: 31%
- NET: 94%
11. **Mod/Lib (Moderate/Liberal):**
- Very well: 32%
- Fairly well: 44%
- NET: 75
12. **Republican:**
- Very well: 61%
- Fairly well: 32%
- NET: 93
13. **Lean Republican:**
- Very well: 36%
- Fairly well: 41%
- NET: 77
### Notes:
- The note at the bottom states that the data is based on Republicans and Republican-leaning independents.
- The source is a survey of U.S. adults conducted from February 4-15, 2020.
### Key Observations:
1. Older Republicans (65+) are the most likely to see Trump as someone who "fights for what I believe in," with a net positive percentage of 94.
2. Younger age groups (18-29) have the lowest net positive percentage at 76.
3. Those with higher educational backgrounds (postgrad and college grad) have slightly lower net positive percentages compared to those with some college education (80 vs. 85).
4. Conservatives (63% very well) are the most likely to see Trump this way, followed by Republicans (61%).
5. Lean Republicans (36% very well) have the lowest percentage among the leaner categories.
This detailed description should provide a pure text model with sufficient information to answer any related questions about the image."""
DEFAULT_TOKENS = 826
def load_model():
device = "cpu"
dtype = torch.float32
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
dtype=dtype,
device_map="cpu",
trust_remote_code=True,
low_cpu_mem_usage=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
return model, processor
MODEL, PROCESSOR = load_model()
@torch.inference_mode()
def generate_caption(image: Image.Image, max_new_tokens: int = MAX_NEW_TOKENS):
if image is None:
return "", 0
try:
if not isinstance(image, Image.Image):
return "Error: Invalid image format", 0
max_size = 4096
if image.width > max_size or image.height > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
device = MODEL.device
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": DEFAULT_PROMPT},
],
}
]
prompt_text = PROCESSOR.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = PROCESSOR(
text=[prompt_text],
images=[image],
return_tensors="pt",
).to(device)
# Ensure slider value is an integer within bounds
try:
max_tokens = int(max(32, min(4096, int(max_new_tokens))))
except Exception:
max_tokens = MAX_NEW_TOKENS
generated_ids = MODEL.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=False,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = PROCESSOR.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
caption = output_text[0].strip()
input_ids = inputs.get("input_ids")
input_length = input_ids.shape[-1] if input_ids is not None else 0
total_length = generated_ids.shape[-1]
num_generated_tokens = max(total_length - input_length, 0)
return caption, int(num_generated_tokens)
except RuntimeError as e:
return f"Runtime error: {str(e)}", 0
except Exception as e:
return f"Error generating caption: {str(e)}", 0
with gr.Blocks(title="CapRL Image Captioning (CPU)") as demo:
gr.Markdown("# π¨ CapRL for Image Captioning (CPU)")
gr.Markdown("### CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning")
gr.Markdown("β¨ Upload an image to generate a detailed caption with CapRL-3B (CPU-only)! β¨")
gr.Markdown(
"""
π <a href=\"https://arxiv.org/abs/2509.22647\">Paper</a> | π <a href=\"https://github.com/InternLM/CapRL\">Github</a> | π€ <a href=\"https://huggingface.co/internlm/CapRL-3B\">CapRL-3B Model</a> | π€ <a href=\"https://huggingface.co/yuhangzang/CapRL-InternVL3.5-8B\">CapRL-InternVL3.5-8B Model</a> |
π€ <a href=\"https://huggingface.co/datasets/internlm/CapRL-2M\">CapRL-2M Dataset</a>
π€ <a href=\"https://huggingface.co/collections/long-xing1/caprl-68d64ac32ded31596c36e189\">CapRL Collection</a> | π° <a href=\"https://huggingface.co/papers/2509.22647\">Daily Paper</a> | πΎ <a href=\"https://huggingface.co/mradermacher/CapRL-3B-GGUF\">CapRL-3B-GGUF</a> | πΎ <a href=\"https://huggingface.co/mradermacher/CapRL-3B-i1-GGUF\">CapRL-3B-i1-GGUF</a>
"""
)
gr.Markdown(
"""
<div style="font-size: 1.2rem; font-weight: 800; color: #e67300;">
π Prefer faster inference? Try the GPU Space:
<a href="https://huggingface.co/spaces/yuhangzang/caprl" style="color: #e67300; text-decoration: underline; font-weight: 900;">
caprl (GPU Space)
</a>
</div>
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(value=DEFAULT_IMAGE_PATH, type="pil", label="Input Image")
max_new_tokens_slider = gr.Slider(
minimum=32,
maximum=4096,
step=1,
value=MAX_NEW_TOKENS,
label="Max New Tokens (32β4096)",
)
generate_button = gr.Button("Generate Caption")
with gr.Column():
caption_output = gr.Textbox(value=DEFAULT_CAPTION, label="Caption", lines=6)
token_output = gr.Number(value=DEFAULT_TOKENS, label="Generated Tokens", precision=0)
generate_button.click(
fn=generate_caption,
inputs=[image_input, max_new_tokens_slider],
outputs=[caption_output, token_output],
show_progress=True,
)
image_input.upload(
fn=generate_caption,
inputs=[image_input, max_new_tokens_slider],
outputs=[caption_output, token_output],
show_progress=True,
)
gr.Examples(
examples=[
["./examples/1909.png", MAX_NEW_TOKENS],
["./examples/44687.jpeg", MAX_NEW_TOKENS],
["./examples/natural.png", MAX_NEW_TOKENS],
],
inputs=[image_input, max_new_tokens_slider],
outputs=[caption_output, token_output],
fn=generate_caption,
cache_examples=True,
label="πΈ Example Images",
)
gr.Markdown("### Citation")
gr.Markdown("If you find this project useful, please kindly cite:")
citation_text = """@article{xing2025caprl,
title={{CapRL}: Stimulating Dense Image Caption Capabilities via Reinforcement Learning},
author={Xing, Long and Dong, Xiaoyi and Zang, Yuhang and Cao, Yuhang and Liang, Jianze and Huang, Qidong and Wang, Jiaqi and Wu, Feng and Lin, Dahua},
journal={arXiv preprint arXiv:2509.22647},
year={2025}
}"""
gr.Code(value=citation_text, language="markdown", label="BibTeX Citation")
demo.launch()
|