import gradio as gr import torch from PIL import Image from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration MODEL_ID = "internlm/CapRL-3B" DEFAULT_PROMPT = "Describe the image in detail." MAX_NEW_TOKENS = 4096 # Defaults for UI DEFAULT_IMAGE_PATH = "./examples/1909.png" DEFAULT_CAPTION = """The image is a bar chart from the Pew Research Center that illustrates how older Republicans and Republican leaners view Donald Trump, specifically focusing on how many describe the phrase "fights for what I believe in" to describe Trump. The data is based on a survey conducted from February 4-15, 2020, among U.S. adults who identify as Republicans or Republican-leaning independents. ### Title: Older Republicans especially likely to see Trump as fighting for their beliefs ### Main Question: Among Republicans and Republican leaners, % who say the phrase 'fights for what I believe in' describes Trump ... ### Data Breakdown: 1. **All Rep/Lean Rep (Overall):** - Very well: 51% - Fairly well: 36% - NET: 87% 2. **Ages 18-29:** - Very well: 31% - Fairly well: 45% - NET: 76% 3. **30-49:** - Very well: 41% - Fairly well: 42% - NET: 82% 4. **50-64:** - Very well: 58% - Fairly well: 33% - NET: 92% 5. **65+:** - Very well: 68% - Fairly well: 26% - NET: 94% 6. **Postgrad:** - Very well: 42% - Fairly well: 38% - NET: 80% 7. **College grad:** - Very well: 45% - Fairly well: 40% - NET: 85% 8. **Some college:** - Very well: 51% - Fairly well: 36% - NET: 87% 9. **HS or less:** - Very well: 56% - Fairly well: 33% - NET: 89 10. **Conserv (Conservative):** - Very well: 63% - Fairly well: 31% - NET: 94% 11. **Mod/Lib (Moderate/Liberal):** - Very well: 32% - Fairly well: 44% - NET: 75 12. **Republican:** - Very well: 61% - Fairly well: 32% - NET: 93 13. **Lean Republican:** - Very well: 36% - Fairly well: 41% - NET: 77 ### Notes: - The note at the bottom states that the data is based on Republicans and Republican-leaning independents. - The source is a survey of U.S. adults conducted from February 4-15, 2020. ### Key Observations: 1. Older Republicans (65+) are the most likely to see Trump as someone who "fights for what I believe in," with a net positive percentage of 94. 2. Younger age groups (18-29) have the lowest net positive percentage at 76. 3. Those with higher educational backgrounds (postgrad and college grad) have slightly lower net positive percentages compared to those with some college education (80 vs. 85). 4. Conservatives (63% very well) are the most likely to see Trump this way, followed by Republicans (61%). 5. Lean Republicans (36% very well) have the lowest percentage among the leaner categories. This detailed description should provide a pure text model with sufficient information to answer any related questions about the image.""" DEFAULT_TOKENS = 826 def load_model(): device = "cpu" dtype = torch.float32 model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID, dtype=dtype, device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True, ) processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) return model, processor MODEL, PROCESSOR = load_model() @torch.inference_mode() def generate_caption(image: Image.Image, max_new_tokens: int = MAX_NEW_TOKENS): if image is None: return "", 0 try: if not isinstance(image, Image.Image): return "Error: Invalid image format", 0 max_size = 4096 if image.width > max_size or image.height > max_size: image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) device = MODEL.device messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": DEFAULT_PROMPT}, ], } ] prompt_text = PROCESSOR.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = PROCESSOR( text=[prompt_text], images=[image], return_tensors="pt", ).to(device) # Ensure slider value is an integer within bounds try: max_tokens = int(max(32, min(4096, int(max_new_tokens)))) except Exception: max_tokens = MAX_NEW_TOKENS generated_ids = MODEL.generate( **inputs, max_new_tokens=max_tokens, do_sample=False, ) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = PROCESSOR.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) caption = output_text[0].strip() input_ids = inputs.get("input_ids") input_length = input_ids.shape[-1] if input_ids is not None else 0 total_length = generated_ids.shape[-1] num_generated_tokens = max(total_length - input_length, 0) return caption, int(num_generated_tokens) except RuntimeError as e: return f"Runtime error: {str(e)}", 0 except Exception as e: return f"Error generating caption: {str(e)}", 0 with gr.Blocks(title="CapRL Image Captioning (CPU)") as demo: gr.Markdown("# 🎨 CapRL for Image Captioning (CPU)") gr.Markdown("### CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning") gr.Markdown("✨ Upload an image to generate a detailed caption with CapRL-3B (CPU-only)! ✨") gr.Markdown( """ 📖 Paper | 🏠 Github | 🤗 CapRL-3B Model | 🤗 CapRL-InternVL3.5-8B Model | 🤗 CapRL-2M Dataset 🤗 CapRL Collection | 📰 Daily Paper | 💾 CapRL-3B-GGUF | 💾 CapRL-3B-i1-GGUF """ ) gr.Markdown( """
👉 Prefer faster inference? Try the GPU Space: caprl (GPU Space)
""" ) with gr.Row(): with gr.Column(): image_input = gr.Image(value=DEFAULT_IMAGE_PATH, type="pil", label="Input Image") max_new_tokens_slider = gr.Slider( minimum=32, maximum=4096, step=1, value=MAX_NEW_TOKENS, label="Max New Tokens (32–4096)", ) generate_button = gr.Button("Generate Caption") with gr.Column(): caption_output = gr.Textbox(value=DEFAULT_CAPTION, label="Caption", lines=6) token_output = gr.Number(value=DEFAULT_TOKENS, label="Generated Tokens", precision=0) generate_button.click( fn=generate_caption, inputs=[image_input, max_new_tokens_slider], outputs=[caption_output, token_output], show_progress=True, ) image_input.upload( fn=generate_caption, inputs=[image_input, max_new_tokens_slider], outputs=[caption_output, token_output], show_progress=True, ) gr.Examples( examples=[ ["./examples/1909.png", MAX_NEW_TOKENS], ["./examples/44687.jpeg", MAX_NEW_TOKENS], ["./examples/natural.png", MAX_NEW_TOKENS], ], inputs=[image_input, max_new_tokens_slider], outputs=[caption_output, token_output], fn=generate_caption, cache_examples=True, label="📸 Example Images", ) gr.Markdown("### Citation") gr.Markdown("If you find this project useful, please kindly cite:") citation_text = """@article{xing2025caprl, title={{CapRL}: Stimulating Dense Image Caption Capabilities via Reinforcement Learning}, author={Xing, Long and Dong, Xiaoyi and Zang, Yuhang and Cao, Yuhang and Liang, Jianze and Huang, Qidong and Wang, Jiaqi and Wu, Feng and Lin, Dahua}, journal={arXiv preprint arXiv:2509.22647}, year={2025} }""" gr.Code(value=citation_text, language="markdown", label="BibTeX Citation") demo.launch()