Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -7,32 +7,53 @@ import threading
|
|
| 7 |
|
| 8 |
# Load AI models
|
| 9 |
def load_models():
|
| 10 |
-
models = {
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
"
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
return models
|
| 22 |
|
| 23 |
-
models = load_models()
|
| 24 |
-
|
| 25 |
# Define functions to interact with AI models
|
| 26 |
def analyze_text(text, model_name):
|
|
|
|
|
|
|
|
|
|
| 27 |
model = models.get(model_name)
|
| 28 |
-
if model:
|
| 29 |
-
return
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def analyze_file(file, model_name):
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Real-time monitoring and alerting
|
| 38 |
alert_thresholds = {
|
|
@@ -42,42 +63,77 @@ alert_thresholds = {
|
|
| 42 |
}
|
| 43 |
|
| 44 |
def monitor_real_time_data(data_stream, model_name):
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
print(f"Alert: {alert}")
|
| 53 |
|
| 54 |
# Gradio interface
|
| 55 |
-
def
|
| 56 |
with gr.Blocks() as demo:
|
| 57 |
gr.Markdown("# Cybersecurity AI Platform")
|
| 58 |
-
|
| 59 |
-
with gr.Tab("Text
|
| 60 |
-
text_input = gr.Textbox(
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
text_output = gr.Textbox(label="Analysis Result")
|
| 63 |
text_button = gr.Button("Analyze Text")
|
| 64 |
-
text_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
with gr.Tab("File
|
| 67 |
file_input = gr.File(label="Upload file for analysis")
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
file_output = gr.Textbox(label="Analysis Result")
|
| 70 |
file_button = gr.Button("Analyze File")
|
| 71 |
-
file_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
with gr.Tab("Real-time
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
demo
|
| 81 |
|
| 82 |
if __name__ == "__main__":
|
| 83 |
-
|
|
|
|
|
|
| 7 |
|
| 8 |
# Load AI models
|
| 9 |
def load_models():
|
| 10 |
+
models = {}
|
| 11 |
+
try:
|
| 12 |
+
# Text generation model (using smaller open source alternative)
|
| 13 |
+
models["gpt2"] = pipeline("text-generation", model="gpt2")
|
| 14 |
+
|
| 15 |
+
# Classification models
|
| 16 |
+
models["bert-base"] = pipeline("text-classification", model="bert-base-uncased")
|
| 17 |
+
models["distilbert"] = pipeline("text-classification", model="distilbert-base-uncased")
|
| 18 |
+
|
| 19 |
+
# Cybersecurity specific models
|
| 20 |
+
models["phishing-bert"] = pipeline(
|
| 21 |
+
"text-classification",
|
| 22 |
+
model="deepset/bert-base-cased-squad2" # Using a QA model that can be fine-tuned for security
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error loading models: {str(e)}")
|
| 27 |
+
# Fallback to at least one working model
|
| 28 |
+
models["distilbert"] = pipeline("text-classification", model="distilbert-base-uncased")
|
| 29 |
+
|
| 30 |
return models
|
| 31 |
|
|
|
|
|
|
|
| 32 |
# Define functions to interact with AI models
|
| 33 |
def analyze_text(text, model_name):
|
| 34 |
+
if not text.strip():
|
| 35 |
+
return "Please provide some text to analyze."
|
| 36 |
+
|
| 37 |
model = models.get(model_name)
|
| 38 |
+
if not model:
|
| 39 |
+
return f"Model {model_name} not found. Available models: {', '.join(models.keys())}"
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
if model_name == "gpt2":
|
| 43 |
+
result = model(text, max_length=100, num_return_sequences=1)
|
| 44 |
+
return result[0]['generated_text']
|
| 45 |
+
else:
|
| 46 |
+
result = model(text)
|
| 47 |
+
return str(result)
|
| 48 |
+
except Exception as e:
|
| 49 |
+
return f"Error analyzing text: {str(e)}"
|
| 50 |
|
| 51 |
def analyze_file(file, model_name):
|
| 52 |
+
try:
|
| 53 |
+
content = file.read().decode("utf-8")
|
| 54 |
+
return analyze_text(content, model_name)
|
| 55 |
+
except Exception as e:
|
| 56 |
+
return f"Error processing file: {str(e)}"
|
| 57 |
|
| 58 |
# Real-time monitoring and alerting
|
| 59 |
alert_thresholds = {
|
|
|
|
| 63 |
}
|
| 64 |
|
| 65 |
def monitor_real_time_data(data_stream, model_name):
|
| 66 |
+
if not data_stream.strip():
|
| 67 |
+
return "Please provide a data stream URL or content."
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
# For demo purposes, we'll analyze the provided text as a single data point
|
| 71 |
+
result = analyze_text(data_stream, model_name)
|
| 72 |
+
return f"Monitoring result: {result}"
|
| 73 |
+
except Exception as e:
|
| 74 |
+
return f"Error monitoring data: {str(e)}"
|
| 75 |
|
| 76 |
+
# Load models at startup
|
| 77 |
+
models = load_models()
|
|
|
|
| 78 |
|
| 79 |
# Gradio interface
|
| 80 |
+
def create_gradio_interface():
|
| 81 |
with gr.Blocks() as demo:
|
| 82 |
gr.Markdown("# Cybersecurity AI Platform")
|
| 83 |
+
|
| 84 |
+
with gr.Tab("Text Analysis"):
|
| 85 |
+
text_input = gr.Textbox(
|
| 86 |
+
label="Enter text for analysis",
|
| 87 |
+
placeholder="Enter text here..."
|
| 88 |
+
)
|
| 89 |
+
model_dropdown = gr.Dropdown(
|
| 90 |
+
choices=list(models.keys()),
|
| 91 |
+
value=list(models.keys())[0],
|
| 92 |
+
label="Select AI Model"
|
| 93 |
+
)
|
| 94 |
text_output = gr.Textbox(label="Analysis Result")
|
| 95 |
text_button = gr.Button("Analyze Text")
|
| 96 |
+
text_button.click(
|
| 97 |
+
analyze_text,
|
| 98 |
+
inputs=[text_input, model_dropdown],
|
| 99 |
+
outputs=text_output
|
| 100 |
+
)
|
| 101 |
|
| 102 |
+
with gr.Tab("File Analysis"):
|
| 103 |
file_input = gr.File(label="Upload file for analysis")
|
| 104 |
+
file_model_dropdown = gr.Dropdown(
|
| 105 |
+
choices=list(models.keys()),
|
| 106 |
+
value=list(models.keys())[0],
|
| 107 |
+
label="Select AI Model"
|
| 108 |
+
)
|
| 109 |
file_output = gr.Textbox(label="Analysis Result")
|
| 110 |
file_button = gr.Button("Analyze File")
|
| 111 |
+
file_button.click(
|
| 112 |
+
analyze_file,
|
| 113 |
+
inputs=[file_input, file_model_dropdown],
|
| 114 |
+
outputs=file_output
|
| 115 |
+
)
|
| 116 |
|
| 117 |
+
with gr.Tab("Real-time Monitoring"):
|
| 118 |
+
stream_input = gr.Textbox(
|
| 119 |
+
label="Enter data stream content",
|
| 120 |
+
placeholder="Enter data to monitor..."
|
| 121 |
+
)
|
| 122 |
+
stream_model_dropdown = gr.Dropdown(
|
| 123 |
+
choices=list(models.keys()),
|
| 124 |
+
value=list(models.keys())[0],
|
| 125 |
+
label="Select AI Model"
|
| 126 |
+
)
|
| 127 |
+
stream_output = gr.Textbox(label="Monitoring Result")
|
| 128 |
+
stream_button = gr.Button("Start Monitoring")
|
| 129 |
+
stream_button.click(
|
| 130 |
+
monitor_real_time_data,
|
| 131 |
+
inputs=[stream_input, stream_model_dropdown],
|
| 132 |
+
outputs=stream_output
|
| 133 |
+
)
|
| 134 |
|
| 135 |
+
return demo
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
+
demo = create_gradio_interface()
|
| 139 |
+
demo.launch()
|