Spaces:
Running
Running
| import os | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| from PIL import Image, ImageDraw | |
| import traceback | |
| import gradio as gr | |
| import torch | |
| from docquery import pipeline | |
| from docquery.document import load_document, ImageDocument | |
| from docquery.ocr_reader import get_ocr_reader | |
| def ensure_list(x): | |
| if isinstance(x, list): | |
| return x | |
| else: | |
| return [x] | |
| CHECKPOINTS = { | |
| "LayoutLMv1": "impira/layoutlm-document-qa", | |
| "LayoutLMv1 for Invoices": "impira/layoutlm-invoices", | |
| "Donut": "naver-clova-ix/donut-base-finetuned-docvqa", | |
| } | |
| PIPELINES = {} | |
| def construct_pipeline(task, model): | |
| global PIPELINES | |
| if model in PIPELINES: | |
| return PIPELINES[model] | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| ret = pipeline(task=task, model=CHECKPOINTS[model], device=device) | |
| PIPELINES[model] = ret | |
| return ret | |
| def run_pipeline(model, question, document, top_k): | |
| pipeline = construct_pipeline("document-question-answering", model) | |
| return pipeline(question=question, **document.context, top_k=top_k) | |
| # TODO: Move into docquery | |
| # TODO: Support words past the first page (or window?) | |
| def lift_word_boxes(document, page): | |
| return document.context["image"][page][1] | |
| def expand_bbox(word_boxes): | |
| if len(word_boxes) == 0: | |
| return None | |
| min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes]) | |
| min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)] | |
| return [min_x, min_y, max_x, max_y] | |
| # LayoutLM boxes are normalized to 0, 1000 | |
| def normalize_bbox(box, width, height, padding=0.005): | |
| min_x, min_y, max_x, max_y = [c / 1000 for c in box] | |
| if padding != 0: | |
| min_x = max(0, min_x - padding) | |
| min_y = max(0, min_y - padding) | |
| max_x = min(max_x + padding, 1) | |
| max_y = min(max_y + padding, 1) | |
| return [min_x * width, min_y * height, max_x * width, max_y * height] | |
| examples = [ | |
| [ | |
| "invoice.png", | |
| "What is the invoice number?", | |
| ], | |
| [ | |
| "contract.jpeg", | |
| "What is the purchase amount?", | |
| ], | |
| [ | |
| "statement.png", | |
| "What are net sales for 2020?", | |
| ], | |
| # [ | |
| # "docquery.png", | |
| # "How many likes does the space have?", | |
| # ], | |
| # [ | |
| # "hacker_news.png", | |
| # "What is the title of post number 5?", | |
| # ], | |
| ] | |
| question_files = { | |
| "What are net sales for 2020?": "statement.pdf", | |
| "How many likes does the space have?": "https://huggingface.co/spaces/impira/docquery", | |
| "What is the title of post number 5?": "https://news.ycombinator.com", | |
| } | |
| def process_path(path): | |
| error = None | |
| if path: | |
| try: | |
| document = load_document(path) | |
| return ( | |
| document, | |
| gr.update(visible=True, value=document.preview), | |
| gr.update(visible=True), | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False, value=None), | |
| None, | |
| ) | |
| except Exception as e: | |
| traceback.print_exc() | |
| error = str(e) | |
| return ( | |
| None, | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False), | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=True, value=error) if error is not None else None, | |
| None, | |
| ) | |
| def process_upload(file): | |
| if file: | |
| return process_path(file.name) | |
| else: | |
| return ( | |
| None, | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False), | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False, value=None), | |
| None, | |
| ) | |
| colors = ["#64A087", "black", "black"] | |
| def process_question(question, document, model=list(CHECKPOINTS.keys())[0]): | |
| if not question or document is None: | |
| return None, None, None | |
| text_value = None | |
| predictions = run_pipeline(model, question, document, 3) | |
| pages = [x.copy().convert("RGB") for x in document.preview] | |
| for i, p in enumerate(ensure_list(predictions)): | |
| if i == 0: | |
| text_value = p["answer"] | |
| else: | |
| # Keep the code around to produce multiple boxes, but only show the top | |
| # prediction for now | |
| break | |
| if "word_ids" in p: | |
| image = pages[p["page"]] | |
| draw = ImageDraw.Draw(image, "RGBA") | |
| word_boxes = lift_word_boxes(document, p["page"]) | |
| x1, y1, x2, y2 = normalize_bbox( | |
| expand_bbox([word_boxes[i] for i in p["word_ids"]]), | |
| image.width, | |
| image.height, | |
| ) | |
| draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255))) | |
| return ( | |
| gr.update(visible=True, value=pages), | |
| gr.update(visible=True, value=predictions), | |
| gr.update( | |
| visible=True, | |
| value=text_value, | |
| ), | |
| ) | |
| def load_example_document(img, question, model): | |
| if img is not None: | |
| if question in question_files: | |
| document = load_document(question_files[question]) | |
| else: | |
| document = ImageDocument(Image.fromarray(img), get_ocr_reader()) | |
| preview, answer, answer_text = process_question(question, document, model) | |
| return document, question, preview, gr.update(visible=True), answer, answer_text | |
| else: | |
| return None, None, None, gr.update(visible=False), None, None | |
| CSS = """ | |
| #question input { | |
| font-size: 16px; | |
| } | |
| #url-textbox { | |
| padding: 0 !important; | |
| } | |
| #short-upload-box .w-full { | |
| min-height: 10rem !important; | |
| } | |
| /* I think something like this can be used to re-shape | |
| * the table | |
| */ | |
| /* | |
| .gr-samples-table tr { | |
| display: inline; | |
| } | |
| .gr-samples-table .p-2 { | |
| width: 100px; | |
| } | |
| */ | |
| #select-a-file { | |
| width: 100%; | |
| } | |
| #file-clear { | |
| padding-top: 2px !important; | |
| padding-bottom: 2px !important; | |
| padding-left: 8px !important; | |
| padding-right: 8px !important; | |
| margin-top: 10px; | |
| } | |
| .gradio-container .gr-button-primary { | |
| background: linear-gradient(180deg, #FAED27 0%, #FAED27 100%); | |
| border: 1px solid #000000; | |
| border-radius: 8px; | |
| color: #000000; | |
| } | |
| .gradio-container.dark button#submit-button { | |
| background: linear-gradient(180deg, #FAED27 0%, #FAED27 100%); | |
| border: 1px solid #000000; | |
| border-radius: 8px; | |
| color: #000000 | |
| } | |
| table.gr-samples-table tr td { | |
| border: none; | |
| outline: none; | |
| } | |
| table.gr-samples-table tr td:first-of-type { | |
| width: 0%; | |
| } | |
| div#short-upload-box div.absolute { | |
| display: none !important; | |
| } | |
| gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div { | |
| gap: 0px 2%; | |
| } | |
| gradio-app div div div div.w-full, .gradio-app div div div div.w-full { | |
| gap: 0px; | |
| } | |
| gradio-app h2, .gradio-app h2 { | |
| padding-top: 10px; | |
| } | |
| #answer { | |
| overflow-y: scroll; | |
| color: white; | |
| background: #666; | |
| border-color: #666; | |
| font-size: 20px; | |
| font-weight: bold; | |
| } | |
| #answer span { | |
| color: white; | |
| } | |
| #answer textarea { | |
| color:white; | |
| background: #777; | |
| border-color: #777; | |
| font-size: 18px; | |
| } | |
| #url-error input { | |
| color: red; | |
| } | |
| """ | |
| with gr.Blocks(css=CSS) as demo: | |
| gr.Markdown() | |
| gr.Markdown( | |
| ) | |
| document = gr.Variable() | |
| example_question = gr.Textbox(visible=False) | |
| example_image = gr.Image(visible=False) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown("## 1. Select a file", elem_id="select-a-file") | |
| img_clear_button = gr.Button( | |
| "Clear", variant="secondary", elem_id="file-clear", visible=False | |
| ) | |
| image = gr.Gallery(visible=False) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| with gr.Row(): | |
| url = gr.Textbox( | |
| show_label=False, | |
| placeholder="URL", | |
| lines=1, | |
| max_lines=1, | |
| elem_id="url-textbox", | |
| ) | |
| submit = gr.Button("Get") | |
| url_error = gr.Textbox( | |
| visible=False, | |
| elem_id="url-error", | |
| max_lines=1, | |
| interactive=False, | |
| label="Error", | |
| ) | |
| gr.Markdown("— or —") | |
| upload = gr.File(label=None, interactive=True, elem_id="short-upload-box") | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[example_image, example_question], | |
| ) | |
| with gr.Column() as col: | |
| gr.Markdown("## 2. Ask a question") | |
| question = gr.Textbox( | |
| label="Question", | |
| placeholder="e.g. What is the invoice number?", | |
| lines=1, | |
| max_lines=1, | |
| ) | |
| model = gr.Radio( | |
| choices=list(CHECKPOINTS.keys()), | |
| value=list(CHECKPOINTS.keys())[0], | |
| label="Model", | |
| ) | |
| with gr.Row(): | |
| clear_button = gr.Button("Clear", variant="secondary") | |
| submit_button = gr.Button( | |
| "Submit", variant="primary", elem_id="submit-button" | |
| ) | |
| with gr.Column(): | |
| output_text = gr.Textbox( | |
| label="Top Answer", visible=False, elem_id="answer" | |
| ) | |
| output = gr.JSON(label="Output", visible=False) | |
| for cb in [img_clear_button, clear_button]: | |
| cb.click( | |
| lambda _: ( | |
| gr.update(visible=False, value=None), | |
| None, | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False, value=None), | |
| gr.update(visible=False), | |
| None, | |
| None, | |
| None, | |
| gr.update(visible=False, value=None), | |
| None, | |
| ), | |
| inputs=clear_button, | |
| outputs=[ | |
| image, | |
| document, | |
| output, | |
| output_text, | |
| img_clear_button, | |
| example_image, | |
| upload, | |
| url, | |
| url_error, | |
| question, | |
| ], | |
| ) | |
| upload.change( | |
| fn=process_upload, | |
| inputs=[upload], | |
| outputs=[document, image, img_clear_button, output, output_text, url_error], | |
| ) | |
| submit.click( | |
| fn=process_path, | |
| inputs=[url], | |
| outputs=[document, image, img_clear_button, output, output_text, url_error], | |
| ) | |
| question.submit( | |
| fn=process_question, | |
| inputs=[question, document, model], | |
| outputs=[image, output, output_text], | |
| ) | |
| submit_button.click( | |
| process_question, | |
| inputs=[question, document, model], | |
| outputs=[image, output, output_text], | |
| ) | |
| model.change( | |
| process_question, | |
| inputs=[question, document, model], | |
| outputs=[image, output, output_text], | |
| ) | |
| example_image.change( | |
| fn=load_example_document, | |
| inputs=[example_image, example_question, model], | |
| outputs=[document, question, image, img_clear_button, output, output_text], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(enable_queue=False) |