Spaces:
Runtime error
Runtime error
Commit
·
7a7f7dc
1
Parent(s):
5409c41
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,11 +3,6 @@ import pandas as pd
|
|
| 3 |
import numpy as np
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
|
| 5 |
|
| 6 |
-
# load tokenizer and model, create trainer
|
| 7 |
-
model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 10 |
-
trainer = Trainer(model=model)
|
| 11 |
|
| 12 |
# summary function - test for single gradio function interfrace
|
| 13 |
def bulk_function(filename):
|
|
@@ -22,11 +17,47 @@ def bulk_function(filename):
|
|
| 22 |
def __getitem__(self, idx):
|
| 23 |
return {k: v[idx] for k, v in self.tokenized_texts.items()}
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# Tokenize texts and create prediction data set
|
| 32 |
tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
|
|
@@ -39,10 +70,13 @@ def bulk_function(filename):
|
|
| 39 |
preds = predictions.predictions.argmax(-1)
|
| 40 |
labels = pd.Series(preds).map(model.config.id2label)
|
| 41 |
scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# scores raw
|
| 43 |
temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
|
| 44 |
|
| 45 |
-
# work in progress
|
| 46 |
# container
|
| 47 |
anger = []
|
| 48 |
disgust = []
|
|
@@ -54,24 +88,27 @@ def bulk_function(filename):
|
|
| 54 |
|
| 55 |
# extract scores (as many entries as exist in pred_texts)
|
| 56 |
for i in range(len(lines_s)):
|
| 57 |
-
anger.append(temp[i][0])
|
| 58 |
-
disgust.append(temp[i][1])
|
| 59 |
-
fear.append(temp[i][2])
|
| 60 |
-
joy.append(temp[i][3])
|
| 61 |
-
neutral.append(temp[i][4])
|
| 62 |
-
sadness.append(temp[i][5])
|
| 63 |
-
surprise.append(temp[i][6])
|
| 64 |
|
| 65 |
# define df
|
| 66 |
-
df = pd.DataFrame(list(zip(lines_s,
|
| 67 |
-
|
| 68 |
# save results to csv
|
| 69 |
YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file
|
| 70 |
-
df.to_csv(YOUR_FILENAME)
|
| 71 |
|
| 72 |
# return dataframe for space output
|
| 73 |
return YOUR_FILENAME
|
| 74 |
|
| 75 |
-
gr.Interface(bulk_function, [gr.inputs.File(file_count="single", type="file", label="
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
).launch(debug=True)
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# summary function - test for single gradio function interfrace
|
| 8 |
def bulk_function(filename):
|
|
|
|
| 17 |
def __getitem__(self, idx):
|
| 18 |
return {k: v[idx] for k, v in self.tokenized_texts.items()}
|
| 19 |
|
| 20 |
+
# load tokenizer and model, create trainer
|
| 21 |
+
model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 24 |
+
trainer = Trainer(model=model)
|
| 25 |
+
print(filename, type(filename))
|
| 26 |
+
print(filename.name)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# check type of input file
|
| 30 |
+
if filename.name.split(".")[1] == "csv":
|
| 31 |
+
print("entered")
|
| 32 |
+
# read file, drop index if exists
|
| 33 |
+
df_input = pd.read_csv(filename.name, index_col=False)
|
| 34 |
+
if df_input.columns[0] == "Unnamed: 0":
|
| 35 |
+
df_input = df_input.drop("Unnamed: 0", axis=1)
|
| 36 |
+
elif filename.name.split(".")[1] == "xlsx":
|
| 37 |
+
df_input = pd.read_excel(filename.name, index_col=False)
|
| 38 |
+
# handle Unnamed
|
| 39 |
+
if df_input.columns[0] == "Unnamed: 0":
|
| 40 |
+
df_input = df_input.drop("Unnamed: 0", axis=1)
|
| 41 |
+
else:
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# read csv
|
| 46 |
+
# even if index given, drop it
|
| 47 |
+
#df_input = pd.read_csv(filename.name, index_col=False)
|
| 48 |
+
#print("df_input", df_input)
|
| 49 |
+
|
| 50 |
+
# expect csv format to be in:
|
| 51 |
+
# 1: ID
|
| 52 |
+
# 2: Texts
|
| 53 |
+
# no index
|
| 54 |
+
# store ids in ordered list
|
| 55 |
+
ids = df_input[df_input.columns[0]].to_list()
|
| 56 |
+
|
| 57 |
+
# store sentences in ordered list
|
| 58 |
+
# expects sentences to be in second col
|
| 59 |
+
# of csv with two cols
|
| 60 |
+
lines_s = df_input[df_input.columns[1]].to_list()
|
| 61 |
|
| 62 |
# Tokenize texts and create prediction data set
|
| 63 |
tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
|
|
|
|
| 70 |
preds = predictions.predictions.argmax(-1)
|
| 71 |
labels = pd.Series(preds).map(model.config.id2label)
|
| 72 |
scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
|
| 73 |
+
|
| 74 |
+
# round scores
|
| 75 |
+
scores_rounded = [round(score, 2) for score in scores]
|
| 76 |
+
|
| 77 |
# scores raw
|
| 78 |
temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
|
| 79 |
|
|
|
|
| 80 |
# container
|
| 81 |
anger = []
|
| 82 |
disgust = []
|
|
|
|
| 88 |
|
| 89 |
# extract scores (as many entries as exist in pred_texts)
|
| 90 |
for i in range(len(lines_s)):
|
| 91 |
+
anger.append(round(temp[i][0], 3))
|
| 92 |
+
disgust.append(round(temp[i][1], 3))
|
| 93 |
+
fear.append(round(temp[i][2], 3))
|
| 94 |
+
joy.append(round(temp[i][3], 3))
|
| 95 |
+
neutral.append(round(temp[i][4], 3))
|
| 96 |
+
sadness.append(round(temp[i][5], 3))
|
| 97 |
+
surprise.append(round(temp[i][6], 3))
|
| 98 |
|
| 99 |
# define df
|
| 100 |
+
df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
|
| 101 |
+
print(df)
|
| 102 |
# save results to csv
|
| 103 |
YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file
|
| 104 |
+
df.to_csv(YOUR_FILENAME, index=False)
|
| 105 |
|
| 106 |
# return dataframe for space output
|
| 107 |
return YOUR_FILENAME
|
| 108 |
|
| 109 |
+
gr.Interface(bulk_function, inputs=[gr.inputs.File(file_count="single", type="file", label="Upload file", optional=False),],
|
| 110 |
+
outputs=[gr.outputs.File(label="Output file")],
|
| 111 |
+
# examples=[["YOUR_FILENAME.csv"]], # computes, doesn't export df so far
|
| 112 |
+
theme="huggingface",
|
| 113 |
+
allow_flagging=False,
|
| 114 |
).launch(debug=True)
|