Spaces:
Sleeping
Sleeping
File size: 10,967 Bytes
157c6fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
"""
FastAPI inference server for BuilderBrain.
Provides REST API endpoints for model inference, grammar validation,
and real-time monitoring data.
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import json
import time
import psutil
import asyncio
from typing import Dict, List, Any, Optional
from datetime import datetime
from pydantic import BaseModel
import sys
import os
# Add parent directory to path for BuilderBrain imports
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', '..'))
# Pydantic models for request/response
class InferenceRequest(BaseModel):
prompt: str
model_scale: str = "small"
grammar_strict: bool = True
max_tokens: int = 100
class GrammarPreviewRequest(BaseModel):
text: str
grammar_type: str = "json"
class PlanValidationRequest(BaseModel):
nodes: List[Dict[str, Any]]
edges: List[Dict[str, Any]]
class ModelExportRequest(BaseModel):
scale: str
format: str = "hf"
class ModelScaleRequest(BaseModel):
scale: str
# Global state for mock responses (in production, this would connect to actual BuilderBrain)
class MockBuilderBrainState:
def __init__(self):
self.current_scale = "small"
self.grammar_enabled = True
self.plan_validation_enabled = True
self.training_active = False
self.current_step = 1500
self.total_loss = 2.34
# Mock training history
self.training_history = {
'total_loss': [5.0, 4.5, 3.8, 3.2, 2.8, 2.5, 2.3, 2.34, 2.32, 2.31],
'task_loss': [4.8, 4.2, 3.5, 2.9, 2.5, 2.2, 2.0, 2.1, 2.05, 2.03],
'constraint_losses': {
'grammar': [0.2, 0.18, 0.15, 0.12, 0.1, 0.08, 0.06, 0.05, 0.04, 0.035],
'graph2graph': [0.15, 0.12, 0.1, 0.08, 0.06, 0.05, 0.04, 0.03, 0.025, 0.02],
'reuse': [0.05, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01, 0.008, 0.006]
},
'dual_variables': {
'grammar': [1.5, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.75, 0.7, 0.65],
'graph2graph': [1.2, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35],
'reuse': [0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2]
}
}
# Initialize state
brain_state = MockBuilderBrainState()
# Create FastAPI app
app = FastAPI(
title="BuilderBrain Inference API",
description="REST API for BuilderBrain model inference and monitoring",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify allowed origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
@app.get("/model/status")
async def get_model_status():
"""Get current model status."""
return {
"model_scale": brain_state.current_scale,
"status": "ready",
"grammar_enabled": brain_state.grammar_enabled,
"plan_validation_enabled": brain_state.plan_validation_enabled,
"last_training": "2024-01-15T10:30:00Z"
}
@app.post("/inference/generate")
async def run_inference(request: InferenceRequest):
"""Run inference with the specified model."""
# Simulate processing time
await asyncio.sleep(0.1)
# Mock response generation
prompt_words = len(request.prompt.split())
response_text = f"Mock response to: {request.prompt[:50]}..."
if request.grammar_strict:
response_text = '{"response": "Properly formatted JSON response"}'
return {
"prompt": request.prompt,
"response": response_text,
"model_scale": request.model_scale,
"grammar_strict": request.grammar_strict,
"tokens_generated": prompt_words + 20,
"processing_time": 0.1,
"grammar_violations": 0 if request.grammar_strict else 2,
"timestamp": datetime.now().isoformat()
}
@app.get("/grammar/constraints")
async def get_grammar_constraints():
"""Get available grammar constraints."""
return {
"available_grammars": ["json", "api", "robot_dsl", "phone_flow"],
"strict_modes": ["json", "api", "robot_dsl"],
"flexible_modes": ["phone_flow"]
}
@app.post("/grammar/preview")
async def get_grammar_preview(request: GrammarPreviewRequest):
"""Preview how text would be constrained by grammar."""
await asyncio.sleep(0.02) # Simulate processing
return {
"original_text": request.text,
"constrained_text": request.text, # Mock constraint
"violations": [],
"suggestions": ["Consider using proper JSON formatting"]
}
@app.post("/plans/validate")
async def validate_plan(request: PlanValidationRequest):
"""Validate a plan DAG against current schema."""
await asyncio.sleep(0.05) # Simulate validation time
return {
"valid": True,
"validation_time": 0.05,
"errors": [],
"warnings": ["Consider adding more preconditions for safety"]
}
@app.post("/plans/preview")
async def get_plan_execution_preview(request: PlanValidationRequest):
"""Preview plan execution without actually running it."""
await asyncio.sleep(0.03)
return {
"estimated_execution_time": 2.5,
"resource_requirements": {"cpu": 0.3, "memory": 0.2},
"risk_assessment": "low",
"optimization_suggestions": ["Consider parallelizing independent steps"]
}
@app.get("/training/metrics")
async def get_training_metrics():
"""Get current training metrics from active trainer."""
return {
"current_step": brain_state.current_step,
"total_loss": brain_state.total_loss,
"task_loss": brain_state.training_history['task_loss'][-1],
"constraint_losses": {
k: v[-1] for k, v in brain_state.training_history['constraint_losses'].items()
},
"dual_variables": {
k: v[-1] for k, v in brain_state.training_history['dual_variables'].items()
},
"timestamp": datetime.now().isoformat()
}
@app.get("/constraints/metrics")
async def get_constraint_metrics():
"""Get constraint satisfaction metrics."""
return {
"grammar_compliance_rate": 0.95,
"plan_execution_success_rate": 0.88,
"constraint_violation_rate": 0.02,
"safety_energy": 0.05,
"timestamp": datetime.now().isoformat()
}
@app.get("/system/metrics")
async def get_system_metrics():
"""Get system performance metrics."""
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
return {
"cpu_percent": cpu_percent,
"memory_percent": memory.percent,
"memory_used_gb": memory.used / (1024**3),
"memory_available_gb": memory.available / (1024**3),
"disk_percent": disk.percent,
"disk_used_gb": disk.used / (1024**3),
"disk_free_gb": disk.free / (1024**3),
"active_processes": len(psutil.pids()),
"timestamp": datetime.now().isoformat()
}
@app.get("/models/scales")
async def get_model_scales():
"""Get available model scales."""
return {"scales": ["tiny", "small", "production"]}
@app.post("/models/scale")
async def set_model_scale(request: ModelScaleRequest):
"""Set the active model scale."""
brain_state.current_scale = request.scale
return {"status": "success", "scale": request.scale}
@app.post("/models/export")
async def export_model(request: ModelExportRequest):
"""Export model in specified format."""
await asyncio.sleep(2.0) # Simulate export time
return {
"export_id": f"export_{request.scale}_{int(time.time())}",
"status": "completed",
"download_url": f"/mock/download/{request.scale}",
"file_size": "1.2GB"
}
@app.get("/exports/{export_id}")
async def get_export_status(export_id: str):
"""Check status of model export."""
return {
"export_id": export_id,
"status": "completed",
"progress": 100,
"download_url": f"/mock/download/{export_id}"
}
# Background task for simulating training
async def simulate_training():
"""Background task to simulate ongoing training."""
while True:
if brain_state.training_active:
# Update training metrics
brain_state.current_step += 1
# Simulate loss improvement
improvement_factor = 0.999
brain_state.total_loss *= improvement_factor
# Update history
if len(brain_state.training_history['total_loss']) >= 10:
brain_state.training_history['total_loss'].pop(0)
brain_state.training_history['task_loss'].pop(0)
for k in brain_state.training_history['constraint_losses']:
brain_state.training_history['constraint_losses'][k].pop(0)
for k in brain_state.training_history['dual_variables']:
brain_state.training_history['dual_variables'][k].pop(0)
brain_state.training_history['total_loss'].append(brain_state.total_loss)
brain_state.training_history['task_loss'].append(brain_state.total_loss * 0.85)
for k in brain_state.training_history['constraint_losses']:
brain_state.training_history['constraint_losses'][k].append(
brain_state.training_history['constraint_losses'][k][-1] * improvement_factor
)
for k in brain_state.training_history['dual_variables']:
brain_state.training_history['dual_variables'][k].append(
brain_state.training_history['dual_variables'][k][-1] * 0.995
)
await asyncio.sleep(1.0) # Update every second
@app.on_event("startup")
async def startup_event():
"""Initialize background tasks on startup."""
asyncio.create_task(simulate_training())
@app.post("/training/start")
async def start_training():
"""Start training simulation."""
brain_state.training_active = True
return {"status": "training_started"}
@app.post("/training/stop")
async def stop_training():
"""Stop training simulation."""
brain_state.training_active = False
return {"status": "training_stopped"}
@app.get("/training/status")
async def get_training_status():
"""Get current training status."""
return {
"active": brain_state.training_active,
"current_step": brain_state.current_step,
"total_loss": brain_state.total_loss,
"timestamp": datetime.now().isoformat()
}
if __name__ == "__main__":
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info"
)
|