Spaces:
Sleeping
Sleeping
Upload huggingface_pipeline/inference_api/app.py with huggingface_hub
Browse files
huggingface_pipeline/inference_api/app.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
FastAPI inference server for BuilderBrain.
|
| 3 |
+
|
| 4 |
+
Provides REST API endpoints for model inference, grammar validation,
|
| 5 |
+
and real-time monitoring data.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
| 9 |
+
from fastapi.responses import JSONResponse
|
| 10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
+
import uvicorn
|
| 12 |
+
import json
|
| 13 |
+
import time
|
| 14 |
+
import psutil
|
| 15 |
+
import asyncio
|
| 16 |
+
from typing import Dict, List, Any, Optional
|
| 17 |
+
from datetime import datetime
|
| 18 |
+
from pydantic import BaseModel
|
| 19 |
+
import sys
|
| 20 |
+
import os
|
| 21 |
+
|
| 22 |
+
# Add parent directory to path for BuilderBrain imports
|
| 23 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', '..'))
|
| 24 |
+
|
| 25 |
+
# Pydantic models for request/response
|
| 26 |
+
class InferenceRequest(BaseModel):
|
| 27 |
+
prompt: str
|
| 28 |
+
model_scale: str = "small"
|
| 29 |
+
grammar_strict: bool = True
|
| 30 |
+
max_tokens: int = 100
|
| 31 |
+
|
| 32 |
+
class GrammarPreviewRequest(BaseModel):
|
| 33 |
+
text: str
|
| 34 |
+
grammar_type: str = "json"
|
| 35 |
+
|
| 36 |
+
class PlanValidationRequest(BaseModel):
|
| 37 |
+
nodes: List[Dict[str, Any]]
|
| 38 |
+
edges: List[Dict[str, Any]]
|
| 39 |
+
|
| 40 |
+
class ModelExportRequest(BaseModel):
|
| 41 |
+
scale: str
|
| 42 |
+
format: str = "hf"
|
| 43 |
+
|
| 44 |
+
class ModelScaleRequest(BaseModel):
|
| 45 |
+
scale: str
|
| 46 |
+
|
| 47 |
+
# Global state for mock responses (in production, this would connect to actual BuilderBrain)
|
| 48 |
+
class MockBuilderBrainState:
|
| 49 |
+
def __init__(self):
|
| 50 |
+
self.current_scale = "small"
|
| 51 |
+
self.grammar_enabled = True
|
| 52 |
+
self.plan_validation_enabled = True
|
| 53 |
+
self.training_active = False
|
| 54 |
+
self.current_step = 1500
|
| 55 |
+
self.total_loss = 2.34
|
| 56 |
+
|
| 57 |
+
# Mock training history
|
| 58 |
+
self.training_history = {
|
| 59 |
+
'total_loss': [5.0, 4.5, 3.8, 3.2, 2.8, 2.5, 2.3, 2.34, 2.32, 2.31],
|
| 60 |
+
'task_loss': [4.8, 4.2, 3.5, 2.9, 2.5, 2.2, 2.0, 2.1, 2.05, 2.03],
|
| 61 |
+
'constraint_losses': {
|
| 62 |
+
'grammar': [0.2, 0.18, 0.15, 0.12, 0.1, 0.08, 0.06, 0.05, 0.04, 0.035],
|
| 63 |
+
'graph2graph': [0.15, 0.12, 0.1, 0.08, 0.06, 0.05, 0.04, 0.03, 0.025, 0.02],
|
| 64 |
+
'reuse': [0.05, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01, 0.008, 0.006]
|
| 65 |
+
},
|
| 66 |
+
'dual_variables': {
|
| 67 |
+
'grammar': [1.5, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.75, 0.7, 0.65],
|
| 68 |
+
'graph2graph': [1.2, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35],
|
| 69 |
+
'reuse': [0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2]
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
# Initialize state
|
| 74 |
+
brain_state = MockBuilderBrainState()
|
| 75 |
+
|
| 76 |
+
# Create FastAPI app
|
| 77 |
+
app = FastAPI(
|
| 78 |
+
title="BuilderBrain Inference API",
|
| 79 |
+
description="REST API for BuilderBrain model inference and monitoring",
|
| 80 |
+
version="1.0.0"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Add CORS middleware
|
| 84 |
+
app.add_middleware(
|
| 85 |
+
CORSMiddleware,
|
| 86 |
+
allow_origins=["*"], # In production, specify allowed origins
|
| 87 |
+
allow_credentials=True,
|
| 88 |
+
allow_methods=["*"],
|
| 89 |
+
allow_headers=["*"],
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
@app.get("/health")
|
| 93 |
+
async def health_check():
|
| 94 |
+
"""Health check endpoint."""
|
| 95 |
+
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
|
| 96 |
+
|
| 97 |
+
@app.get("/model/status")
|
| 98 |
+
async def get_model_status():
|
| 99 |
+
"""Get current model status."""
|
| 100 |
+
return {
|
| 101 |
+
"model_scale": brain_state.current_scale,
|
| 102 |
+
"status": "ready",
|
| 103 |
+
"grammar_enabled": brain_state.grammar_enabled,
|
| 104 |
+
"plan_validation_enabled": brain_state.plan_validation_enabled,
|
| 105 |
+
"last_training": "2024-01-15T10:30:00Z"
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
@app.post("/inference/generate")
|
| 109 |
+
async def run_inference(request: InferenceRequest):
|
| 110 |
+
"""Run inference with the specified model."""
|
| 111 |
+
# Simulate processing time
|
| 112 |
+
await asyncio.sleep(0.1)
|
| 113 |
+
|
| 114 |
+
# Mock response generation
|
| 115 |
+
prompt_words = len(request.prompt.split())
|
| 116 |
+
response_text = f"Mock response to: {request.prompt[:50]}..."
|
| 117 |
+
|
| 118 |
+
if request.grammar_strict:
|
| 119 |
+
response_text = '{"response": "Properly formatted JSON response"}'
|
| 120 |
+
|
| 121 |
+
return {
|
| 122 |
+
"prompt": request.prompt,
|
| 123 |
+
"response": response_text,
|
| 124 |
+
"model_scale": request.model_scale,
|
| 125 |
+
"grammar_strict": request.grammar_strict,
|
| 126 |
+
"tokens_generated": prompt_words + 20,
|
| 127 |
+
"processing_time": 0.1,
|
| 128 |
+
"grammar_violations": 0 if request.grammar_strict else 2,
|
| 129 |
+
"timestamp": datetime.now().isoformat()
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
@app.get("/grammar/constraints")
|
| 133 |
+
async def get_grammar_constraints():
|
| 134 |
+
"""Get available grammar constraints."""
|
| 135 |
+
return {
|
| 136 |
+
"available_grammars": ["json", "api", "robot_dsl", "phone_flow"],
|
| 137 |
+
"strict_modes": ["json", "api", "robot_dsl"],
|
| 138 |
+
"flexible_modes": ["phone_flow"]
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
@app.post("/grammar/preview")
|
| 142 |
+
async def get_grammar_preview(request: GrammarPreviewRequest):
|
| 143 |
+
"""Preview how text would be constrained by grammar."""
|
| 144 |
+
await asyncio.sleep(0.02) # Simulate processing
|
| 145 |
+
|
| 146 |
+
return {
|
| 147 |
+
"original_text": request.text,
|
| 148 |
+
"constrained_text": request.text, # Mock constraint
|
| 149 |
+
"violations": [],
|
| 150 |
+
"suggestions": ["Consider using proper JSON formatting"]
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
@app.post("/plans/validate")
|
| 154 |
+
async def validate_plan(request: PlanValidationRequest):
|
| 155 |
+
"""Validate a plan DAG against current schema."""
|
| 156 |
+
await asyncio.sleep(0.05) # Simulate validation time
|
| 157 |
+
|
| 158 |
+
return {
|
| 159 |
+
"valid": True,
|
| 160 |
+
"validation_time": 0.05,
|
| 161 |
+
"errors": [],
|
| 162 |
+
"warnings": ["Consider adding more preconditions for safety"]
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
@app.post("/plans/preview")
|
| 166 |
+
async def get_plan_execution_preview(request: PlanValidationRequest):
|
| 167 |
+
"""Preview plan execution without actually running it."""
|
| 168 |
+
await asyncio.sleep(0.03)
|
| 169 |
+
|
| 170 |
+
return {
|
| 171 |
+
"estimated_execution_time": 2.5,
|
| 172 |
+
"resource_requirements": {"cpu": 0.3, "memory": 0.2},
|
| 173 |
+
"risk_assessment": "low",
|
| 174 |
+
"optimization_suggestions": ["Consider parallelizing independent steps"]
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
@app.get("/training/metrics")
|
| 178 |
+
async def get_training_metrics():
|
| 179 |
+
"""Get current training metrics from active trainer."""
|
| 180 |
+
return {
|
| 181 |
+
"current_step": brain_state.current_step,
|
| 182 |
+
"total_loss": brain_state.total_loss,
|
| 183 |
+
"task_loss": brain_state.training_history['task_loss'][-1],
|
| 184 |
+
"constraint_losses": {
|
| 185 |
+
k: v[-1] for k, v in brain_state.training_history['constraint_losses'].items()
|
| 186 |
+
},
|
| 187 |
+
"dual_variables": {
|
| 188 |
+
k: v[-1] for k, v in brain_state.training_history['dual_variables'].items()
|
| 189 |
+
},
|
| 190 |
+
"timestamp": datetime.now().isoformat()
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
@app.get("/constraints/metrics")
|
| 194 |
+
async def get_constraint_metrics():
|
| 195 |
+
"""Get constraint satisfaction metrics."""
|
| 196 |
+
return {
|
| 197 |
+
"grammar_compliance_rate": 0.95,
|
| 198 |
+
"plan_execution_success_rate": 0.88,
|
| 199 |
+
"constraint_violation_rate": 0.02,
|
| 200 |
+
"safety_energy": 0.05,
|
| 201 |
+
"timestamp": datetime.now().isoformat()
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
@app.get("/system/metrics")
|
| 205 |
+
async def get_system_metrics():
|
| 206 |
+
"""Get system performance metrics."""
|
| 207 |
+
cpu_percent = psutil.cpu_percent(interval=1)
|
| 208 |
+
memory = psutil.virtual_memory()
|
| 209 |
+
disk = psutil.disk_usage('/')
|
| 210 |
+
|
| 211 |
+
return {
|
| 212 |
+
"cpu_percent": cpu_percent,
|
| 213 |
+
"memory_percent": memory.percent,
|
| 214 |
+
"memory_used_gb": memory.used / (1024**3),
|
| 215 |
+
"memory_available_gb": memory.available / (1024**3),
|
| 216 |
+
"disk_percent": disk.percent,
|
| 217 |
+
"disk_used_gb": disk.used / (1024**3),
|
| 218 |
+
"disk_free_gb": disk.free / (1024**3),
|
| 219 |
+
"active_processes": len(psutil.pids()),
|
| 220 |
+
"timestamp": datetime.now().isoformat()
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
@app.get("/models/scales")
|
| 224 |
+
async def get_model_scales():
|
| 225 |
+
"""Get available model scales."""
|
| 226 |
+
return {"scales": ["tiny", "small", "production"]}
|
| 227 |
+
|
| 228 |
+
@app.post("/models/scale")
|
| 229 |
+
async def set_model_scale(request: ModelScaleRequest):
|
| 230 |
+
"""Set the active model scale."""
|
| 231 |
+
brain_state.current_scale = request.scale
|
| 232 |
+
return {"status": "success", "scale": request.scale}
|
| 233 |
+
|
| 234 |
+
@app.post("/models/export")
|
| 235 |
+
async def export_model(request: ModelExportRequest):
|
| 236 |
+
"""Export model in specified format."""
|
| 237 |
+
await asyncio.sleep(2.0) # Simulate export time
|
| 238 |
+
|
| 239 |
+
return {
|
| 240 |
+
"export_id": f"export_{request.scale}_{int(time.time())}",
|
| 241 |
+
"status": "completed",
|
| 242 |
+
"download_url": f"/mock/download/{request.scale}",
|
| 243 |
+
"file_size": "1.2GB"
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
@app.get("/exports/{export_id}")
|
| 247 |
+
async def get_export_status(export_id: str):
|
| 248 |
+
"""Check status of model export."""
|
| 249 |
+
return {
|
| 250 |
+
"export_id": export_id,
|
| 251 |
+
"status": "completed",
|
| 252 |
+
"progress": 100,
|
| 253 |
+
"download_url": f"/mock/download/{export_id}"
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
# Background task for simulating training
|
| 257 |
+
async def simulate_training():
|
| 258 |
+
"""Background task to simulate ongoing training."""
|
| 259 |
+
while True:
|
| 260 |
+
if brain_state.training_active:
|
| 261 |
+
# Update training metrics
|
| 262 |
+
brain_state.current_step += 1
|
| 263 |
+
|
| 264 |
+
# Simulate loss improvement
|
| 265 |
+
improvement_factor = 0.999
|
| 266 |
+
brain_state.total_loss *= improvement_factor
|
| 267 |
+
|
| 268 |
+
# Update history
|
| 269 |
+
if len(brain_state.training_history['total_loss']) >= 10:
|
| 270 |
+
brain_state.training_history['total_loss'].pop(0)
|
| 271 |
+
brain_state.training_history['task_loss'].pop(0)
|
| 272 |
+
for k in brain_state.training_history['constraint_losses']:
|
| 273 |
+
brain_state.training_history['constraint_losses'][k].pop(0)
|
| 274 |
+
for k in brain_state.training_history['dual_variables']:
|
| 275 |
+
brain_state.training_history['dual_variables'][k].pop(0)
|
| 276 |
+
|
| 277 |
+
brain_state.training_history['total_loss'].append(brain_state.total_loss)
|
| 278 |
+
brain_state.training_history['task_loss'].append(brain_state.total_loss * 0.85)
|
| 279 |
+
|
| 280 |
+
for k in brain_state.training_history['constraint_losses']:
|
| 281 |
+
brain_state.training_history['constraint_losses'][k].append(
|
| 282 |
+
brain_state.training_history['constraint_losses'][k][-1] * improvement_factor
|
| 283 |
+
)
|
| 284 |
+
for k in brain_state.training_history['dual_variables']:
|
| 285 |
+
brain_state.training_history['dual_variables'][k].append(
|
| 286 |
+
brain_state.training_history['dual_variables'][k][-1] * 0.995
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
await asyncio.sleep(1.0) # Update every second
|
| 290 |
+
|
| 291 |
+
@app.on_event("startup")
|
| 292 |
+
async def startup_event():
|
| 293 |
+
"""Initialize background tasks on startup."""
|
| 294 |
+
asyncio.create_task(simulate_training())
|
| 295 |
+
|
| 296 |
+
@app.post("/training/start")
|
| 297 |
+
async def start_training():
|
| 298 |
+
"""Start training simulation."""
|
| 299 |
+
brain_state.training_active = True
|
| 300 |
+
return {"status": "training_started"}
|
| 301 |
+
|
| 302 |
+
@app.post("/training/stop")
|
| 303 |
+
async def stop_training():
|
| 304 |
+
"""Stop training simulation."""
|
| 305 |
+
brain_state.training_active = False
|
| 306 |
+
return {"status": "training_stopped"}
|
| 307 |
+
|
| 308 |
+
@app.get("/training/status")
|
| 309 |
+
async def get_training_status():
|
| 310 |
+
"""Get current training status."""
|
| 311 |
+
return {
|
| 312 |
+
"active": brain_state.training_active,
|
| 313 |
+
"current_step": brain_state.current_step,
|
| 314 |
+
"total_loss": brain_state.total_loss,
|
| 315 |
+
"timestamp": datetime.now().isoformat()
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
if __name__ == "__main__":
|
| 319 |
+
uvicorn.run(
|
| 320 |
+
"app:app",
|
| 321 |
+
host="0.0.0.0",
|
| 322 |
+
port=8000,
|
| 323 |
+
reload=True,
|
| 324 |
+
log_level="info"
|
| 325 |
+
)
|