pass ocr output through LLM for spell and grammar correction
Browse files
app.py
CHANGED
|
@@ -2,16 +2,15 @@ import gradio as gr
|
|
| 2 |
|
| 3 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
-
from transformers import
|
| 6 |
from ultralytics import YOLO
|
| 7 |
from PIL import Image
|
| 8 |
-
import torch
|
| 9 |
|
| 10 |
def process(path, progress = gr.Progress()):
|
| 11 |
progress(0, desc="Starting")
|
| 12 |
LINE_MODEL_PATH = "Kansallisarkisto/multicentury-textline-detection"
|
| 13 |
-
#OCR_MODEL_PATH = "Kansallisarkisto/multicentury-htr-model"
|
| 14 |
OCR_MODEL_PATH = "microsoft/trocr-large-handwritten"
|
|
|
|
| 15 |
|
| 16 |
# Load the model and processor
|
| 17 |
processor = TrOCRProcessor.from_pretrained(OCR_MODEL_PATH)
|
|
@@ -43,7 +42,11 @@ def process(path, progress = gr.Progress()):
|
|
| 43 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 44 |
full_text += generated_text
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
if __name__ == "__main__":
|
| 49 |
demo = gr.Interface(fn=process, inputs=gr.Image(type="filepath"), outputs="text")
|
|
|
|
| 2 |
|
| 3 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
+
from transformers import pipeline
|
| 6 |
from ultralytics import YOLO
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
|
| 9 |
def process(path, progress = gr.Progress()):
|
| 10 |
progress(0, desc="Starting")
|
| 11 |
LINE_MODEL_PATH = "Kansallisarkisto/multicentury-textline-detection"
|
|
|
|
| 12 |
OCR_MODEL_PATH = "microsoft/trocr-large-handwritten"
|
| 13 |
+
CORRECTOR_PATH = "oliverguhr/spelling-correction-english-base"
|
| 14 |
|
| 15 |
# Load the model and processor
|
| 16 |
processor = TrOCRProcessor.from_pretrained(OCR_MODEL_PATH)
|
|
|
|
| 42 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 43 |
full_text += generated_text
|
| 44 |
|
| 45 |
+
fix_spelling = pipeline("text2text-generation",model=CORRECTOR_PATH)
|
| 46 |
+
fixed_text = fix_spelling(full_text, max_new_tokens=len(full_text)+100)
|
| 47 |
+
fixed_text = fixed_text[0]['generated_text']
|
| 48 |
+
|
| 49 |
+
return fixed_text
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
| 52 |
demo = gr.Interface(fn=process, inputs=gr.Image(type="filepath"), outputs="text")
|