Spaces:
Runtime error
Runtime error
Update app.py
Browse filesthis upadte improve the visibility and rendering of the 3d mesh, add export_video option as well
app.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
import trimesh
|
| 6 |
import mcubes
|
|
|
|
| 7 |
from torchvision.utils import save_image
|
| 8 |
from PIL import Image
|
| 9 |
from transformers import AutoModel, AutoConfig
|
|
@@ -11,13 +13,13 @@ from rembg import remove, new_session
|
|
| 11 |
from functools import partial
|
| 12 |
from kiui.op import recenter
|
| 13 |
import kiui
|
| 14 |
-
|
| 15 |
|
| 16 |
# we load the pre-trained model from HF
|
| 17 |
class LRMGeneratorWrapper:
|
| 18 |
def __init__(self):
|
| 19 |
-
self.config = AutoConfig.from_pretrained("jadechoghari/
|
| 20 |
-
self.model = AutoModel.from_pretrained("jadechoghari/
|
| 21 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
self.model.to(self.device)
|
| 23 |
self.model.eval()
|
|
@@ -27,7 +29,7 @@ class LRMGeneratorWrapper:
|
|
| 27 |
|
| 28 |
model_wrapper = LRMGeneratorWrapper()
|
| 29 |
|
| 30 |
-
|
| 31 |
def preprocess_image(image, source_size):
|
| 32 |
session = new_session("isnet-general-use")
|
| 33 |
rembg_remove = partial(remove, session=session)
|
|
@@ -42,11 +44,9 @@ def preprocess_image(image, source_size):
|
|
| 42 |
image = torch.clamp(image, 0, 1)
|
| 43 |
return image
|
| 44 |
|
|
|
|
|
|
|
| 45 |
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
| 46 |
-
"""
|
| 47 |
-
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
| 48 |
-
Return batched fx, fy, cx, cy
|
| 49 |
-
"""
|
| 50 |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
|
| 51 |
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
|
| 52 |
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
|
|
@@ -54,52 +54,112 @@ def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
|
| 54 |
cx, cy = cx / width, cy / height
|
| 55 |
return fx, fy, cx, cy
|
| 56 |
|
| 57 |
-
|
| 58 |
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
"""
|
| 60 |
RT: (N, 3, 4)
|
| 61 |
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
| 62 |
"""
|
|
|
|
| 63 |
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
return torch.cat([
|
| 65 |
-
|
| 66 |
-
|
| 67 |
], dim=-1)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
w = h = 512
|
| 74 |
-
intrinsics = torch.tensor([
|
| 75 |
-
[fx, fy],
|
| 76 |
-
[cx, cy],
|
| 77 |
-
[w, h],
|
| 78 |
-
], dtype=torch.float32)
|
| 79 |
-
return intrinsics
|
| 80 |
|
| 81 |
-
def
|
| 82 |
-
dist_to_center = 1.5
|
| 83 |
-
canonical_camera_extrinsics = torch.tensor([[
|
| 84 |
-
[0, 0, 1, 1],
|
| 85 |
-
[1, 0, 0, 0],
|
| 86 |
-
[0, 1, 0, 0],
|
| 87 |
-
]], dtype=torch.float32)
|
| 88 |
-
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
|
| 89 |
-
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
|
| 90 |
-
return source_camera.repeat(batch_size, 1)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py
|
| 94 |
-
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True):
|
| 95 |
image = preprocess_image(image, source_size).to(model_wrapper.device)
|
| 96 |
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
|
| 97 |
-
# TODO: export video we need render_camera
|
| 98 |
-
# render_camera = _default_render_cameras(batch_size=1).to(model_wrapper.device)
|
| 99 |
|
| 100 |
with torch.no_grad():
|
| 101 |
planes = model_wrapper.forward(image, source_camera)
|
| 102 |
-
|
| 103 |
if export_mesh:
|
| 104 |
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
|
| 105 |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
|
|
@@ -108,34 +168,96 @@ def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export
|
|
| 108 |
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
|
| 109 |
vtx_colors = (vtx_colors * 255).astype(np.uint8)
|
| 110 |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
|
| 111 |
-
|
| 112 |
mesh_path = "awesome_mesh.obj"
|
| 113 |
mesh.export(mesh_path, 'obj')
|
| 114 |
-
return mesh_path
|
| 115 |
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
def step_1_generate_obj(image):
|
| 118 |
-
mesh_path = generate_mesh(image)
|
| 119 |
-
return mesh_path
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
def step_2_display_3d_model(mesh_file):
|
| 123 |
return mesh_file
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
with gr.Blocks() as demo:
|
| 126 |
with gr.Row():
|
|
|
|
| 127 |
with gr.Column():
|
| 128 |
img_input = gr.Image(type="pil", label="Input Image")
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
obj_file_output = gr.File(label="Download .obj File")
|
| 131 |
-
|
|
|
|
| 132 |
with gr.Column():
|
| 133 |
-
model_output =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
def generate_and_visualize(image):
|
| 136 |
mesh_path = step_1_generate_obj(image)
|
| 137 |
return mesh_path, mesh_path
|
| 138 |
-
|
| 139 |
-
generate_button.click(generate_and_visualize, inputs=img_input, outputs=[obj_file_output, model_output])
|
| 140 |
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# final one
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
| 5 |
import numpy as np
|
| 6 |
import trimesh
|
| 7 |
import mcubes
|
| 8 |
+
import imageio
|
| 9 |
from torchvision.utils import save_image
|
| 10 |
from PIL import Image
|
| 11 |
from transformers import AutoModel, AutoConfig
|
|
|
|
| 13 |
from functools import partial
|
| 14 |
from kiui.op import recenter
|
| 15 |
import kiui
|
| 16 |
+
from gradio_litmodel3d import LitModel3D
|
| 17 |
|
| 18 |
# we load the pre-trained model from HF
|
| 19 |
class LRMGeneratorWrapper:
|
| 20 |
def __init__(self):
|
| 21 |
+
self.config = AutoConfig.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
|
| 22 |
+
self.model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
|
| 23 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 24 |
self.model.to(self.device)
|
| 25 |
self.model.eval()
|
|
|
|
| 29 |
|
| 30 |
model_wrapper = LRMGeneratorWrapper()
|
| 31 |
|
| 32 |
+
# we preprocess the input image
|
| 33 |
def preprocess_image(image, source_size):
|
| 34 |
session = new_session("isnet-general-use")
|
| 35 |
rembg_remove = partial(remove, session=session)
|
|
|
|
| 44 |
image = torch.clamp(image, 0, 1)
|
| 45 |
return image
|
| 46 |
|
| 47 |
+
# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and
|
| 48 |
+
# https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py
|
| 49 |
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
|
| 51 |
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
|
| 52 |
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
|
|
|
|
| 54 |
cx, cy = cx / width, cy / height
|
| 55 |
return fx, fy, cx, cy
|
| 56 |
|
|
|
|
| 57 |
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
|
| 58 |
+
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
| 59 |
+
return torch.cat([
|
| 60 |
+
RT.reshape(-1, 12),
|
| 61 |
+
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
|
| 62 |
+
], dim=-1)
|
| 63 |
+
|
| 64 |
+
def _default_intrinsics():
|
| 65 |
+
fx = fy = 384
|
| 66 |
+
cx = cy = 256
|
| 67 |
+
w = h = 512
|
| 68 |
+
intrinsics = torch.tensor([
|
| 69 |
+
[fx, fy],
|
| 70 |
+
[cx, cy],
|
| 71 |
+
[w, h],
|
| 72 |
+
], dtype=torch.float32)
|
| 73 |
+
return intrinsics
|
| 74 |
+
|
| 75 |
+
def _default_source_camera(batch_size: int = 1):
|
| 76 |
+
canonical_camera_extrinsics = torch.tensor([[
|
| 77 |
+
[0, 0, 1, 1],
|
| 78 |
+
[1, 0, 0, 0],
|
| 79 |
+
[0, 1, 0, 0],
|
| 80 |
+
]], dtype=torch.float32)
|
| 81 |
+
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
|
| 82 |
+
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
|
| 83 |
+
return source_camera.repeat(batch_size, 1)
|
| 84 |
+
|
| 85 |
+
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
|
| 86 |
+
"""
|
| 87 |
+
camera_position: (M, 3)
|
| 88 |
+
look_at: (3)
|
| 89 |
+
up_world: (3)
|
| 90 |
+
return: (M, 3, 4)
|
| 91 |
+
"""
|
| 92 |
+
# by default, looking at the origin and world up is pos-z
|
| 93 |
+
if look_at is None:
|
| 94 |
+
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
|
| 95 |
+
if up_world is None:
|
| 96 |
+
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
|
| 97 |
+
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
|
| 98 |
+
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
|
| 99 |
+
|
| 100 |
+
z_axis = camera_position - look_at
|
| 101 |
+
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
|
| 102 |
+
x_axis = torch.cross(up_world, z_axis)
|
| 103 |
+
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
|
| 104 |
+
y_axis = torch.cross(z_axis, x_axis)
|
| 105 |
+
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
|
| 106 |
+
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
|
| 107 |
+
return extrinsics
|
| 108 |
+
|
| 109 |
+
def compose_extrinsic_RT(RT: torch.Tensor):
|
| 110 |
+
"""
|
| 111 |
+
Compose the standard form extrinsic matrix from RT.
|
| 112 |
+
Batched I/O.
|
| 113 |
+
"""
|
| 114 |
+
return torch.cat([
|
| 115 |
+
RT,
|
| 116 |
+
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
|
| 117 |
+
], dim=1)
|
| 118 |
+
|
| 119 |
+
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
|
| 120 |
"""
|
| 121 |
RT: (N, 3, 4)
|
| 122 |
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
| 123 |
"""
|
| 124 |
+
E = compose_extrinsic_RT(RT)
|
| 125 |
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
| 126 |
+
I = torch.stack([
|
| 127 |
+
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
|
| 128 |
+
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
|
| 129 |
+
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
|
| 130 |
+
], dim=1)
|
| 131 |
return torch.cat([
|
| 132 |
+
E.reshape(-1, 16),
|
| 133 |
+
I.reshape(-1, 9),
|
| 134 |
], dim=-1)
|
| 135 |
|
| 136 |
+
def _default_render_cameras(batch_size: int = 1):
|
| 137 |
+
M = 160
|
| 138 |
+
radius = 1.5
|
| 139 |
+
elevation = 0
|
| 140 |
+
camera_positions = []
|
| 141 |
+
rand_theta = np.random.uniform(0, np.pi/180)
|
| 142 |
+
elevation = np.radians(elevation)
|
| 143 |
+
for i in range(M):
|
| 144 |
+
theta = 2 * np.pi * i / M + rand_theta
|
| 145 |
+
x = radius * np.cos(theta) * np.cos(elevation)
|
| 146 |
+
y = radius * np.sin(theta) * np.cos(elevation)
|
| 147 |
+
z = radius * np.sin(elevation)
|
| 148 |
+
camera_positions.append([x, y, z])
|
| 149 |
+
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
|
| 150 |
+
extrinsics = _center_looking_at_camera_pose(camera_positions)
|
| 151 |
|
| 152 |
+
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
|
| 153 |
+
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
|
| 154 |
+
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=True, fps=30):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
image = preprocess_image(image, source_size).to(model_wrapper.device)
|
| 158 |
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
|
|
|
|
|
|
|
| 159 |
|
| 160 |
with torch.no_grad():
|
| 161 |
planes = model_wrapper.forward(image, source_camera)
|
| 162 |
+
|
| 163 |
if export_mesh:
|
| 164 |
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
|
| 165 |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
|
|
|
|
| 168 |
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
|
| 169 |
vtx_colors = (vtx_colors * 255).astype(np.uint8)
|
| 170 |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
|
| 171 |
+
|
| 172 |
mesh_path = "awesome_mesh.obj"
|
| 173 |
mesh.export(mesh_path, 'obj')
|
|
|
|
| 174 |
|
| 175 |
+
return mesh_path, mesh_path
|
| 176 |
+
|
| 177 |
+
if export_video:
|
| 178 |
+
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
|
| 179 |
+
frames = []
|
| 180 |
+
chunk_size = 2
|
| 181 |
+
for i in range(0, render_cameras.shape[1], chunk_size):
|
| 182 |
+
frame_chunk = model_wrapper.model.synthesizer(
|
| 183 |
+
planes,
|
| 184 |
+
render_cameras[:, i:i + chunk_size],
|
| 185 |
+
render_size,
|
| 186 |
+
render_size,
|
| 187 |
+
0,
|
| 188 |
+
0
|
| 189 |
+
)
|
| 190 |
+
frames.append(frame_chunk['images_rgb'])
|
| 191 |
+
|
| 192 |
+
frames = torch.cat(frames, dim=1)
|
| 193 |
+
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
|
| 194 |
+
|
| 195 |
+
video_path = "awesome_video.mp4"
|
| 196 |
+
imageio.mimwrite(video_path, frames, fps=fps)
|
| 197 |
+
|
| 198 |
+
return None, video_path
|
| 199 |
+
|
| 200 |
+
return None, None
|
| 201 |
+
|
| 202 |
def step_1_generate_obj(image):
|
| 203 |
+
mesh_path, _ = generate_mesh(image, export_mesh=True)
|
| 204 |
+
return mesh_path, mesh_path
|
| 205 |
+
|
| 206 |
+
def step_2_generate_video(image):
|
| 207 |
+
_, video_path = generate_mesh(image, export_video=True)
|
| 208 |
+
return video_path
|
| 209 |
|
| 210 |
+
def step_3_display_3d_model(mesh_file):
|
|
|
|
| 211 |
return mesh_file
|
| 212 |
|
| 213 |
+
# set up the example files, we limit to 10
|
| 214 |
+
examples = [
|
| 215 |
+
"/content/cat.png",
|
| 216 |
+
"/content/cat2.png",
|
| 217 |
+
"/content/cat3.png",
|
| 218 |
+
|
| 219 |
+
]
|
| 220 |
+
|
| 221 |
with gr.Blocks() as demo:
|
| 222 |
with gr.Row():
|
| 223 |
+
|
| 224 |
with gr.Column():
|
| 225 |
img_input = gr.Image(type="pil", label="Input Image")
|
| 226 |
+
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3)
|
| 227 |
+
generate_mesh_button = gr.Button("Generate and Download Mesh")
|
| 228 |
+
generate_video_button = gr.Button("Generate and Download Video")
|
| 229 |
obj_file_output = gr.File(label="Download .obj File")
|
| 230 |
+
video_file_output = gr.File(label="Download Video")
|
| 231 |
+
|
| 232 |
with gr.Column():
|
| 233 |
+
model_output = LitModel3D(
|
| 234 |
+
clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast
|
| 235 |
+
label="3D Model Visualization",
|
| 236 |
+
scale=1.0,
|
| 237 |
+
tonemapping="aces", # can use aces tonemapping for more realistic lighting
|
| 238 |
+
exposure=1.0, # can adjust exposure to control brightness
|
| 239 |
+
contrast=1.1, # can slightly increase contrast for better depth
|
| 240 |
+
camera_position=(0, 0, 2), # will set initial camera position to center the model
|
| 241 |
+
zoom_speed=0.5, # will adjust zoom speed for better control
|
| 242 |
+
pan_speed=0.5, # will adjust pan speed for better control
|
| 243 |
+
interactive=True # this allow users to interact with the model
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
# clear outputs
|
| 248 |
+
def clear_model_viewer():
|
| 249 |
+
"""Reset the Model3D component before loading a new model."""
|
| 250 |
+
return gr.update(value=None)
|
| 251 |
|
| 252 |
def generate_and_visualize(image):
|
| 253 |
mesh_path = step_1_generate_obj(image)
|
| 254 |
return mesh_path, mesh_path
|
|
|
|
|
|
|
| 255 |
|
| 256 |
+
# frist we clear the existing 3D model
|
| 257 |
+
img_input.change(clear_model_viewer, inputs=None, outputs=model_output)
|
| 258 |
+
|
| 259 |
+
# then, generate the mesh and video
|
| 260 |
+
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
|
| 261 |
+
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)
|
| 262 |
+
|
| 263 |
+
demo.launch(debug=True)
|