Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,61 @@
|
|
| 1 |
-
import PIL.Image as Image
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
from ultralytics import YOLOv10
|
|
|
|
| 6 |
|
| 7 |
@spaces.GPU
|
| 8 |
-
def
|
| 9 |
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
| 10 |
-
|
| 11 |
-
source=
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
return im
|
| 23 |
|
| 24 |
def app():
|
| 25 |
with gr.Blocks():
|
| 26 |
with gr.Row():
|
| 27 |
with gr.Column():
|
| 28 |
-
image = gr.Image(type="pil", label="Image")
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
model_id = gr.Dropdown(
|
| 31 |
label="Model",
|
| 32 |
choices=[
|
|
@@ -56,35 +85,52 @@ def app():
|
|
| 56 |
yolov10_infer = gr.Button(value="Detect Objects")
|
| 57 |
|
| 58 |
with gr.Column():
|
| 59 |
-
output_image = gr.Image(type="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
yolov10_infer.click(
|
| 62 |
-
fn=
|
| 63 |
-
inputs=[
|
| 64 |
-
|
| 65 |
-
model_id,
|
| 66 |
-
image_size,
|
| 67 |
-
conf_threshold,
|
| 68 |
-
],
|
| 69 |
-
outputs=[output_image],
|
| 70 |
)
|
| 71 |
|
| 72 |
gr.Examples(
|
| 73 |
examples=[
|
| 74 |
[
|
| 75 |
-
"bus.jpg",
|
| 76 |
"yolov10s",
|
| 77 |
640,
|
| 78 |
0.25,
|
| 79 |
],
|
| 80 |
[
|
| 81 |
-
"zidane.jpg",
|
| 82 |
"yolov10s",
|
| 83 |
640,
|
| 84 |
0.25,
|
| 85 |
],
|
| 86 |
],
|
| 87 |
-
fn=
|
| 88 |
inputs=[
|
| 89 |
image,
|
| 90 |
model_id,
|
|
@@ -113,4 +159,4 @@ with gradio_app:
|
|
| 113 |
with gr.Column():
|
| 114 |
app()
|
| 115 |
if __name__ == '__main__':
|
| 116 |
-
gradio_app.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import tempfile
|
| 4 |
from ultralytics import YOLOv10
|
| 5 |
+
import spaces
|
| 6 |
|
| 7 |
@spaces.GPU
|
| 8 |
+
def yolov10_inference(image, video, model_id, image_size, conf_threshold):
|
| 9 |
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
| 10 |
+
if image:
|
| 11 |
+
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
|
| 12 |
+
annotated_image = results[0].plot()
|
| 13 |
+
return annotated_image[:, :, ::-1], None
|
| 14 |
+
else:
|
| 15 |
+
video_path = tempfile.mktemp(suffix=".webm")
|
| 16 |
+
with open(video_path, "wb") as f:
|
| 17 |
+
with open(video, "rb") as g:
|
| 18 |
+
f.write(g.read())
|
| 19 |
+
|
| 20 |
+
cap = cv2.VideoCapture(video_path)
|
| 21 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 22 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 23 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 24 |
+
|
| 25 |
+
output_video_path = tempfile.mktemp(suffix=".webm")
|
| 26 |
+
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
|
| 27 |
+
|
| 28 |
+
while cap.isOpened():
|
| 29 |
+
ret, frame = cap.read()
|
| 30 |
+
if not ret:
|
| 31 |
+
break
|
| 32 |
|
| 33 |
+
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
|
| 34 |
+
annotated_frame = results[0].plot()
|
| 35 |
+
out.write(annotated_frame)
|
| 36 |
+
|
| 37 |
+
cap.release()
|
| 38 |
+
out.release()
|
| 39 |
+
|
| 40 |
+
return None, output_video_path
|
| 41 |
+
|
| 42 |
+
@spaces.GPU
|
| 43 |
+
def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
|
| 44 |
+
annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
|
| 45 |
+
return annotated_image
|
| 46 |
|
|
|
|
| 47 |
|
| 48 |
def app():
|
| 49 |
with gr.Blocks():
|
| 50 |
with gr.Row():
|
| 51 |
with gr.Column():
|
| 52 |
+
image = gr.Image(type="pil", label="Image", visible=True)
|
| 53 |
+
video = gr.Video(label="Video", visible=False)
|
| 54 |
+
input_type = gr.Radio(
|
| 55 |
+
choices=["Image", "Video"],
|
| 56 |
+
value="Image",
|
| 57 |
+
label="Input Type",
|
| 58 |
+
)
|
| 59 |
model_id = gr.Dropdown(
|
| 60 |
label="Model",
|
| 61 |
choices=[
|
|
|
|
| 85 |
yolov10_infer = gr.Button(value="Detect Objects")
|
| 86 |
|
| 87 |
with gr.Column():
|
| 88 |
+
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
| 89 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
| 90 |
+
|
| 91 |
+
def update_visibility(input_type):
|
| 92 |
+
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
| 93 |
+
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
| 94 |
+
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
| 95 |
+
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
| 96 |
+
|
| 97 |
+
return image, video, output_image, output_video
|
| 98 |
+
|
| 99 |
+
input_type.change(
|
| 100 |
+
fn=update_visibility,
|
| 101 |
+
inputs=[input_type],
|
| 102 |
+
outputs=[image, video, output_image, output_video],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
|
| 106 |
+
if input_type == "Image":
|
| 107 |
+
return yolov10_inference(image, None, model_id, image_size, conf_threshold)
|
| 108 |
+
else:
|
| 109 |
+
return yolov10_inference(None, video, model_id, image_size, conf_threshold)
|
| 110 |
+
|
| 111 |
|
| 112 |
yolov10_infer.click(
|
| 113 |
+
fn=run_inference,
|
| 114 |
+
inputs=[image, video, model_id, image_size, conf_threshold, input_type],
|
| 115 |
+
outputs=[output_image, output_video],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
gr.Examples(
|
| 119 |
examples=[
|
| 120 |
[
|
| 121 |
+
"ultralytics/assets/bus.jpg",
|
| 122 |
"yolov10s",
|
| 123 |
640,
|
| 124 |
0.25,
|
| 125 |
],
|
| 126 |
[
|
| 127 |
+
"ultralytics/assets/zidane.jpg",
|
| 128 |
"yolov10s",
|
| 129 |
640,
|
| 130 |
0.25,
|
| 131 |
],
|
| 132 |
],
|
| 133 |
+
fn=yolov10_inference_for_examples,
|
| 134 |
inputs=[
|
| 135 |
image,
|
| 136 |
model_id,
|
|
|
|
| 159 |
with gr.Column():
|
| 160 |
app()
|
| 161 |
if __name__ == '__main__':
|
| 162 |
+
gradio_app.launch()
|