Divyansh Kushwaha
		
	commited on
		
		
					Commit 
							
							·
						
						d97cb07
	
1
								Parent(s):
							
							1b9de11
								
Utils file updated
Browse files
    	
        utils.py
    CHANGED
    
    | @@ -1,3 +1,4 @@ | |
|  | |
| 1 | 
             
            from bs4 import BeautifulSoup
         | 
| 2 | 
             
            import requests
         | 
| 3 | 
             
            from langchain.schema import HumanMessage
         | 
| @@ -7,11 +8,14 @@ from dotenv import load_dotenv | |
| 7 | 
             
            import os
         | 
| 8 | 
             
            from transformers import pipeline
         | 
| 9 |  | 
|  | |
| 10 | 
             
            load_dotenv()
         | 
| 11 | 
             
            GROQ_API_KEY = os.getenv('GROQ_API_KEY')
         | 
| 12 |  | 
| 13 | 
            -
             | 
|  | |
| 14 |  | 
|  | |
| 15 | 
             
            def extract_titles_and_summaries(company_name, num_articles=10):
         | 
| 16 | 
             
                url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
         | 
| 17 | 
             
                try:
         | 
| @@ -48,10 +52,11 @@ def extract_titles_and_summaries(company_name, num_articles=10): | |
| 48 | 
             
                    print(f"An error occurred: {e}")
         | 
| 49 | 
             
                    return []
         | 
| 50 |  | 
|  | |
| 51 | 
             
            def perform_sentiment_analysis(news_data):
         | 
| 52 | 
             
                from transformers import pipeline
         | 
| 53 | 
             
                articles = news_data.get("Articles", [])
         | 
| 54 | 
            -
                pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis",device=1)
         | 
| 55 | 
             
                sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
         | 
| 56 |  | 
| 57 | 
             
                for article in articles:
         | 
| @@ -77,13 +82,15 @@ def perform_sentiment_analysis(news_data): | |
| 77 |  | 
| 78 | 
             
                return news_data, sentiment_counts
         | 
| 79 |  | 
|  | |
| 80 | 
             
            def extract_topics_with_hf(news_data):
         | 
| 81 | 
             
                structured_data = {
         | 
| 82 | 
             
                    "Company": news_data.get("Company", "Unknown"),
         | 
| 83 | 
             
                    "Articles": []
         | 
| 84 | 
             
                }
         | 
| 85 | 
            -
                topic_pipe = pipeline("text-classification", model="valurank/distilroberta-topic-classification",device=1)
         | 
| 86 | 
             
                articles = news_data.get("Articles", [])
         | 
|  | |
| 87 | 
             
                for article in articles:
         | 
| 88 | 
             
                    content = f"{article['Title']} {article['Summary']}"
         | 
| 89 | 
             
                    topics_result = topic_pipe(content, top_k=3)
         | 
| @@ -98,10 +105,12 @@ def extract_topics_with_hf(news_data): | |
| 98 | 
             
                    })
         | 
| 99 | 
             
                return structured_data
         | 
| 100 |  | 
|  | |
| 101 | 
             
            def generate_final_sentiment(news_data, sentiment_counts):
         | 
| 102 | 
             
                company_name = news_data["Company"]
         | 
| 103 | 
             
                total_articles = sum(sentiment_counts.values())
         | 
| 104 | 
             
                combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
         | 
|  | |
| 105 | 
             
                prompt = f"""
         | 
| 106 | 
             
                Based on the analysis of {total_articles} articles about the company "{company_name}":
         | 
| 107 | 
             
                - Positive articles: {sentiment_counts['Positive']}
         | 
| @@ -109,22 +118,26 @@ def generate_final_sentiment(news_data, sentiment_counts): | |
| 109 | 
             
                - Neutral articles: {sentiment_counts['Neutral']}
         | 
| 110 | 
             
                The following are the summarized key points from the articles: "{combined_summaries}".
         | 
| 111 | 
             
                Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
         | 
| 112 | 
            -
                Respond **ONLY** with a well-structured very  | 
| 113 | 
             
                """
         | 
| 114 | 
            -
             | 
|  | |
| 115 | 
             
                final_sentiment = response if response else "Sentiment analysis summary not available."
         | 
| 116 | 
            -
                return final_sentiment.content | 
| 117 |  | 
|  | |
| 118 | 
             
            def extract_json(response):
         | 
| 119 | 
             
                try:
         | 
| 120 | 
             
                    return json.loads(response)
         | 
| 121 | 
             
                except json.JSONDecodeError:
         | 
| 122 | 
             
                    return {}
         | 
| 123 | 
            -
             | 
|  | |
| 124 | 
             
            def compare_articles(news_data, sentiment_counts):
         | 
| 125 | 
             
                articles = news_data.get("Articles", [])
         | 
| 126 | 
             
                all_topics = [set(article["Topics"]) for article in articles]
         | 
| 127 | 
             
                common_topics = set.intersection(*all_topics) if all_topics else set()
         | 
|  | |
| 128 | 
             
                topics_prompt = f"""
         | 
| 129 | 
             
                Analyze the following article topics and identify **only three** key themes that are common across multiple articles, 
         | 
| 130 | 
             
                even if they are phrased differently. The topics from each article are:
         | 
| @@ -133,10 +146,12 @@ def compare_articles(news_data, sentiment_counts): | |
| 133 | 
             
                Respond **ONLY** with a JSON format:
         | 
| 134 | 
             
                {{"CommonTopics": ["topic1", "topic2", "topic3"]}}
         | 
| 135 | 
             
                """
         | 
|  | |
| 136 | 
             
                response = llm.invoke([HumanMessage(content=topics_prompt)]).content
         | 
| 137 | 
             
                contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3]  # Limit to 3 topics
         | 
| 138 |  | 
| 139 | 
             
                total_articles = sum(sentiment_counts.values())
         | 
|  | |
| 140 | 
             
                comparison_prompt = f"""
         | 
| 141 | 
             
                Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
         | 
| 142 | 
             
                - Sentiment distribution: {sentiment_counts}
         | 
| @@ -155,9 +170,12 @@ def compare_articles(news_data, sentiment_counts): | |
| 155 | 
             
                    ]
         | 
| 156 | 
             
                }}
         | 
| 157 | 
             
                """
         | 
|  | |
| 158 | 
             
                response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
         | 
| 159 | 
             
                coverage_differences = extract_json(response).get("Coverage Differences", [])
         | 
|  | |
| 160 | 
             
                final_sentiment = generate_final_sentiment(news_data, sentiment_counts)
         | 
|  | |
| 161 | 
             
                return {
         | 
| 162 | 
             
                    "Company": news_data["Company"],
         | 
| 163 | 
             
                    "Articles": articles,
         | 
| @@ -173,4 +191,4 @@ def compare_articles(news_data, sentiment_counts): | |
| 173 | 
             
                        }
         | 
| 174 | 
             
                    },
         | 
| 175 | 
             
                    "Final Sentiment Analysis": final_sentiment
         | 
| 176 | 
            -
                }
         | 
|  | |
| 1 | 
            +
            # Importing libraries
         | 
| 2 | 
             
            from bs4 import BeautifulSoup
         | 
| 3 | 
             
            import requests
         | 
| 4 | 
             
            from langchain.schema import HumanMessage
         | 
|  | |
| 8 | 
             
            import os
         | 
| 9 | 
             
            from transformers import pipeline
         | 
| 10 |  | 
| 11 | 
            +
            # Load environment variables
         | 
| 12 | 
             
            load_dotenv()
         | 
| 13 | 
             
            GROQ_API_KEY = os.getenv('GROQ_API_KEY')
         | 
| 14 |  | 
| 15 | 
            +
            # Initialize the LLM model
         | 
| 16 | 
            +
            llm = ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant")
         | 
| 17 |  | 
| 18 | 
            +
            # Function to extract news titles and summaries from Economic Times
         | 
| 19 | 
             
            def extract_titles_and_summaries(company_name, num_articles=10):
         | 
| 20 | 
             
                url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
         | 
| 21 | 
             
                try:
         | 
|  | |
| 52 | 
             
                    print(f"An error occurred: {e}")
         | 
| 53 | 
             
                    return []
         | 
| 54 |  | 
| 55 | 
            +
            # Function to perform sentiment analysis on extracted news articles
         | 
| 56 | 
             
            def perform_sentiment_analysis(news_data):
         | 
| 57 | 
             
                from transformers import pipeline
         | 
| 58 | 
             
                articles = news_data.get("Articles", [])
         | 
| 59 | 
            +
                pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis", device=1)
         | 
| 60 | 
             
                sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
         | 
| 61 |  | 
| 62 | 
             
                for article in articles:
         | 
|  | |
| 82 |  | 
| 83 | 
             
                return news_data, sentiment_counts
         | 
| 84 |  | 
| 85 | 
            +
            # Function to extract topics from articles using Hugging Face model
         | 
| 86 | 
             
            def extract_topics_with_hf(news_data):
         | 
| 87 | 
             
                structured_data = {
         | 
| 88 | 
             
                    "Company": news_data.get("Company", "Unknown"),
         | 
| 89 | 
             
                    "Articles": []
         | 
| 90 | 
             
                }
         | 
| 91 | 
            +
                topic_pipe = pipeline("text-classification", model="valurank/distilroberta-topic-classification", device=1)
         | 
| 92 | 
             
                articles = news_data.get("Articles", [])
         | 
| 93 | 
            +
             | 
| 94 | 
             
                for article in articles:
         | 
| 95 | 
             
                    content = f"{article['Title']} {article['Summary']}"
         | 
| 96 | 
             
                    topics_result = topic_pipe(content, top_k=3)
         | 
|  | |
| 105 | 
             
                    })
         | 
| 106 | 
             
                return structured_data
         | 
| 107 |  | 
| 108 | 
            +
            # Function to generate a final sentiment summary using LLM
         | 
| 109 | 
             
            def generate_final_sentiment(news_data, sentiment_counts):
         | 
| 110 | 
             
                company_name = news_data["Company"]
         | 
| 111 | 
             
                total_articles = sum(sentiment_counts.values())
         | 
| 112 | 
             
                combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
         | 
| 113 | 
            +
             | 
| 114 | 
             
                prompt = f"""
         | 
| 115 | 
             
                Based on the analysis of {total_articles} articles about the company "{company_name}":
         | 
| 116 | 
             
                - Positive articles: {sentiment_counts['Positive']}
         | 
|  | |
| 118 | 
             
                - Neutral articles: {sentiment_counts['Neutral']}
         | 
| 119 | 
             
                The following are the summarized key points from the articles: "{combined_summaries}".
         | 
| 120 | 
             
                Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
         | 
| 121 | 
            +
                Respond **ONLY** with a well-structured very concise and short paragraph in plain text, focusing on overall sentiment.
         | 
| 122 | 
             
                """
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                response = llm.invoke([HumanMessage(content=prompt)], max_tokens=200)
         | 
| 125 | 
             
                final_sentiment = response if response else "Sentiment analysis summary not available."
         | 
| 126 | 
            +
                return final_sentiment.content  # returns a string
         | 
| 127 |  | 
| 128 | 
            +
            # Function to extract JSON response from LLM output
         | 
| 129 | 
             
            def extract_json(response):
         | 
| 130 | 
             
                try:
         | 
| 131 | 
             
                    return json.loads(response)
         | 
| 132 | 
             
                except json.JSONDecodeError:
         | 
| 133 | 
             
                    return {}
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            # Function to compare articles based on common topics and sentiment variations
         | 
| 136 | 
             
            def compare_articles(news_data, sentiment_counts):
         | 
| 137 | 
             
                articles = news_data.get("Articles", [])
         | 
| 138 | 
             
                all_topics = [set(article["Topics"]) for article in articles]
         | 
| 139 | 
             
                common_topics = set.intersection(*all_topics) if all_topics else set()
         | 
| 140 | 
            +
             | 
| 141 | 
             
                topics_prompt = f"""
         | 
| 142 | 
             
                Analyze the following article topics and identify **only three** key themes that are common across multiple articles, 
         | 
| 143 | 
             
                even if they are phrased differently. The topics from each article are:
         | 
|  | |
| 146 | 
             
                Respond **ONLY** with a JSON format:
         | 
| 147 | 
             
                {{"CommonTopics": ["topic1", "topic2", "topic3"]}}
         | 
| 148 | 
             
                """
         | 
| 149 | 
            +
                
         | 
| 150 | 
             
                response = llm.invoke([HumanMessage(content=topics_prompt)]).content
         | 
| 151 | 
             
                contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3]  # Limit to 3 topics
         | 
| 152 |  | 
| 153 | 
             
                total_articles = sum(sentiment_counts.values())
         | 
| 154 | 
            +
             | 
| 155 | 
             
                comparison_prompt = f"""
         | 
| 156 | 
             
                Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
         | 
| 157 | 
             
                - Sentiment distribution: {sentiment_counts}
         | 
|  | |
| 170 | 
             
                    ]
         | 
| 171 | 
             
                }}
         | 
| 172 | 
             
                """
         | 
| 173 | 
            +
             | 
| 174 | 
             
                response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
         | 
| 175 | 
             
                coverage_differences = extract_json(response).get("Coverage Differences", [])
         | 
| 176 | 
            +
             | 
| 177 | 
             
                final_sentiment = generate_final_sentiment(news_data, sentiment_counts)
         | 
| 178 | 
            +
             | 
| 179 | 
             
                return {
         | 
| 180 | 
             
                    "Company": news_data["Company"],
         | 
| 181 | 
             
                    "Articles": articles,
         | 
|  | |
| 191 | 
             
                        }
         | 
| 192 | 
             
                    },
         | 
| 193 | 
             
                    "Final Sentiment Analysis": final_sentiment
         | 
| 194 | 
            +
                }
         | 
