Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,21 +14,20 @@ import faiss
|
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
-
# Check
|
| 18 |
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 19 |
if torch.cuda.is_available():
|
| 20 |
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 21 |
-
logger.info(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
|
| 22 |
|
| 23 |
-
#
|
| 24 |
bnb_config = BitsAndBytesConfig(
|
| 25 |
load_in_4bit=True,
|
| 26 |
bnb_4bit_quant_type="nf4",
|
| 27 |
bnb_4bit_compute_dtype=torch.float16,
|
| 28 |
)
|
| 29 |
|
|
|
|
| 30 |
try:
|
| 31 |
-
# Load Qwen-2.5-Omni-3B with memory optimizations
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Omni-3B", trust_remote_code=True)
|
| 33 |
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
"Qwen/Qwen2.5-Omni-3B",
|
|
@@ -36,211 +35,160 @@ try:
|
|
| 36 |
quantization_config=bnb_config,
|
| 37 |
trust_remote_code=True
|
| 38 |
).eval()
|
| 39 |
-
logger.info("
|
| 40 |
except Exception as e:
|
| 41 |
-
logger.error(f"
|
| 42 |
-
model = None
|
| 43 |
-
tokenizer = None
|
| 44 |
|
| 45 |
-
#
|
| 46 |
try:
|
| 47 |
embed_model = SentenceTransformer('paraphrase-MiniLM-L3-v2')
|
| 48 |
-
logger.info("Embedding model loaded
|
| 49 |
except Exception as e:
|
| 50 |
-
logger.error(f"
|
| 51 |
embed_model = None
|
| 52 |
|
| 53 |
-
# Global state
|
| 54 |
chunks = []
|
| 55 |
index = None
|
| 56 |
|
| 57 |
-
# PDF
|
| 58 |
def extract_chunks_from_pdf(pdf_path, chunk_size=1000, overlap=200):
|
| 59 |
try:
|
| 60 |
doc = fitz.open(pdf_path)
|
| 61 |
-
text = ""
|
| 62 |
-
for page in doc:
|
| 63 |
-
text += page.get_text()
|
| 64 |
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - overlap)]
|
| 65 |
except Exception as e:
|
| 66 |
-
logger.error(f"PDF
|
| 67 |
-
return ["Error extracting
|
| 68 |
|
|
|
|
| 69 |
def build_faiss_index(chunks):
|
| 70 |
try:
|
| 71 |
-
if not embed_model:
|
| 72 |
-
return None
|
| 73 |
embeddings = embed_model.encode(chunks, convert_to_numpy=True)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
return idx
|
| 78 |
except Exception as e:
|
| 79 |
logger.error(f"FAISS index error: {e}")
|
| 80 |
return None
|
| 81 |
|
|
|
|
| 82 |
def rag_query(query, chunks, index, top_k=3):
|
| 83 |
-
if not index or not embed_model:
|
| 84 |
-
return "Embedding model not available"
|
| 85 |
try:
|
| 86 |
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
| 87 |
D, I = index.search(q_emb, top_k)
|
| 88 |
return "\n\n".join([chunks[i] for i in I[0]])
|
| 89 |
except Exception as e:
|
| 90 |
logger.error(f"RAG query error: {e}")
|
| 91 |
-
return "Error retrieving context"
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
def chat_with_qwen(text
|
| 95 |
if not model or not tokenizer:
|
| 96 |
-
return "Model
|
| 97 |
-
|
| 98 |
try:
|
| 99 |
-
|
| 100 |
-
messages = []
|
| 101 |
-
|
| 102 |
if image:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
{"image": image},
|
| 106 |
-
{"text": text if text else "Please describe this image."}
|
| 107 |
-
]})
|
| 108 |
-
else:
|
| 109 |
-
# Text-only query
|
| 110 |
-
messages.append({"role": "user", "content": text})
|
| 111 |
-
|
| 112 |
-
# Generate response
|
| 113 |
-
response = model.chat(tokenizer, messages)
|
| 114 |
return response
|
| 115 |
except Exception as e:
|
| 116 |
logger.error(f"Chat error: {e}")
|
| 117 |
-
return f"
|
| 118 |
|
| 119 |
-
#
|
| 120 |
def extract_video_frames(video_path, max_frames=2):
|
| 121 |
try:
|
| 122 |
cap = cv2.VideoCapture(video_path)
|
| 123 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
| 124 |
frames = []
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 131 |
-
success, frame = cap.read()
|
| 132 |
-
if success:
|
| 133 |
-
frames.append(frame)
|
| 134 |
cap.release()
|
| 135 |
return frames
|
| 136 |
except Exception as e:
|
| 137 |
-
logger.error(f"
|
| 138 |
return []
|
| 139 |
|
| 140 |
-
#
|
| 141 |
def multimodal_chat(message, history, image=None, video=None, pdf=None):
|
| 142 |
global chunks, index
|
| 143 |
-
|
| 144 |
if not model:
|
| 145 |
-
return "Model not
|
| 146 |
|
| 147 |
try:
|
| 148 |
-
# PDF
|
| 149 |
-
if pdf:
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
| 151 |
index = build_faiss_index(chunks)
|
| 152 |
if index:
|
| 153 |
context = rag_query(message, chunks, index)
|
| 154 |
-
|
| 155 |
-
|
| 156 |
else:
|
| 157 |
-
|
| 158 |
-
return response
|
| 159 |
|
| 160 |
-
# Image
|
| 161 |
-
if image:
|
| 162 |
-
|
| 163 |
-
return response
|
| 164 |
|
| 165 |
-
# Video
|
| 166 |
-
if video:
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
shutil.copy(video, video_path)
|
| 171 |
frames = extract_video_frames(video_path)
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
frame_descriptions = []
|
| 177 |
-
for i, frame in enumerate(frames):
|
| 178 |
-
temp_img_path = os.path.join(temp_dir, f"frame_{i}.jpg")
|
| 179 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 180 |
-
cv2.imwrite(temp_img_path, frame_rgb)
|
| 181 |
-
|
| 182 |
-
# Get description for this frame
|
| 183 |
-
frame_query = "Describe this video frame in detail."
|
| 184 |
-
frame_description = chat_with_qwen(frame_query, temp_img_path)
|
| 185 |
-
frame_descriptions.append(f"Frame {i+1}: {frame_description}")
|
| 186 |
-
|
| 187 |
-
# Combine frame descriptions and answer the user's question
|
| 188 |
-
combined_context = "\n\n".join(frame_descriptions)
|
| 189 |
-
final_prompt = f"I analyzed some video frames and here's what I found:\n\n{combined_context}\n\nBased on these video frames, {message if message else 'please describe what\'s happening in this video.'}"
|
| 190 |
-
response = chat_with_qwen(final_prompt)
|
| 191 |
-
return response
|
| 192 |
-
else:
|
| 193 |
-
return "Could not extract video frames"
|
| 194 |
-
finally:
|
| 195 |
-
# Cleanup temp files
|
| 196 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 197 |
|
| 198 |
# Text only
|
| 199 |
if message:
|
| 200 |
return chat_with_qwen(message)
|
| 201 |
|
| 202 |
-
return "Please
|
| 203 |
except Exception as e:
|
| 204 |
-
logger.error(f"
|
| 205 |
-
return f"Error
|
| 206 |
|
| 207 |
-
#
|
| 208 |
with gr.Blocks(css="""
|
| 209 |
-
body {
|
| 210 |
-
|
| 211 |
-
}
|
| 212 |
-
.gradio-container {
|
| 213 |
-
font-family: 'Segoe UI', sans-serif;
|
| 214 |
-
}
|
| 215 |
h1 {
|
| 216 |
-
background: linear-gradient(to right, #667eea, #764ba2);
|
| 217 |
-
color: white !important;
|
| 218 |
-
padding: 1rem;
|
| 219 |
-
border-radius: 12px;
|
| 220 |
-
margin-bottom: 0.5rem;
|
| 221 |
-
}
|
| 222 |
-
p {
|
| 223 |
-
font-size: 1rem;
|
| 224 |
-
color: white;
|
| 225 |
}
|
| 226 |
.gr-box {
|
| 227 |
-
background-color: white;
|
| 228 |
-
|
| 229 |
-
box-shadow: 0 0 10px rgba(0,0,0,0.05);
|
| 230 |
-
padding: 16px;
|
| 231 |
}
|
| 232 |
-
footer {display: none !important;}
|
| 233 |
""") as demo:
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
|
|
|
| 238 |
|
| 239 |
chatbot = gr.Chatbot(show_label=False, height=450)
|
| 240 |
state = gr.State([])
|
| 241 |
|
| 242 |
with gr.Row():
|
| 243 |
-
txt = gr.Textbox(show_label=False, placeholder="Type
|
| 244 |
send_btn = gr.Button("🚀 Send", scale=1)
|
| 245 |
|
| 246 |
with gr.Row():
|
|
@@ -250,14 +198,13 @@ footer {display: none !important;}
|
|
| 250 |
|
| 251 |
def user_send(message, history, image, video, pdf):
|
| 252 |
if not message and not image and not video and not pdf:
|
| 253 |
-
return "", history
|
| 254 |
response = multimodal_chat(message, history, image, video, pdf)
|
| 255 |
history.append((message, response))
|
| 256 |
-
return "", history
|
| 257 |
|
| 258 |
-
send_btn.click(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
| 259 |
-
txt.submit(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
demo.launch()
|
|
|
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
# Check CUDA
|
| 18 |
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 19 |
if torch.cuda.is_available():
|
| 20 |
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
|
|
|
| 21 |
|
| 22 |
+
# BitsAndBytes config for quantized model loading
|
| 23 |
bnb_config = BitsAndBytesConfig(
|
| 24 |
load_in_4bit=True,
|
| 25 |
bnb_4bit_quant_type="nf4",
|
| 26 |
bnb_4bit_compute_dtype=torch.float16,
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# Load Qwen model
|
| 30 |
try:
|
|
|
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Omni-3B", trust_remote_code=True)
|
| 32 |
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
"Qwen/Qwen2.5-Omni-3B",
|
|
|
|
| 35 |
quantization_config=bnb_config,
|
| 36 |
trust_remote_code=True
|
| 37 |
).eval()
|
| 38 |
+
logger.info("Qwen model loaded.")
|
| 39 |
except Exception as e:
|
| 40 |
+
logger.error(f"Failed to load Qwen: {e}")
|
| 41 |
+
model, tokenizer = None, None
|
|
|
|
| 42 |
|
| 43 |
+
# Load SentenceTransformer for RAG
|
| 44 |
try:
|
| 45 |
embed_model = SentenceTransformer('paraphrase-MiniLM-L3-v2')
|
| 46 |
+
logger.info("Embedding model loaded.")
|
| 47 |
except Exception as e:
|
| 48 |
+
logger.error(f"Failed to load embedding model: {e}")
|
| 49 |
embed_model = None
|
| 50 |
|
| 51 |
+
# Global index state
|
| 52 |
chunks = []
|
| 53 |
index = None
|
| 54 |
|
| 55 |
+
# PDF text chunking
|
| 56 |
def extract_chunks_from_pdf(pdf_path, chunk_size=1000, overlap=200):
|
| 57 |
try:
|
| 58 |
doc = fitz.open(pdf_path)
|
| 59 |
+
text = "".join([page.get_text() for page in doc])
|
|
|
|
|
|
|
| 60 |
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - overlap)]
|
| 61 |
except Exception as e:
|
| 62 |
+
logger.error(f"PDF error: {e}")
|
| 63 |
+
return ["Error extracting content."]
|
| 64 |
|
| 65 |
+
# Build FAISS index
|
| 66 |
def build_faiss_index(chunks):
|
| 67 |
try:
|
|
|
|
|
|
|
| 68 |
embeddings = embed_model.encode(chunks, convert_to_numpy=True)
|
| 69 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 70 |
+
index.add(embeddings)
|
| 71 |
+
return index
|
|
|
|
| 72 |
except Exception as e:
|
| 73 |
logger.error(f"FAISS index error: {e}")
|
| 74 |
return None
|
| 75 |
|
| 76 |
+
# RAG retrieval
|
| 77 |
def rag_query(query, chunks, index, top_k=3):
|
|
|
|
|
|
|
| 78 |
try:
|
| 79 |
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
| 80 |
D, I = index.search(q_emb, top_k)
|
| 81 |
return "\n\n".join([chunks[i] for i in I[0]])
|
| 82 |
except Exception as e:
|
| 83 |
logger.error(f"RAG query error: {e}")
|
| 84 |
+
return "Error retrieving context."
|
| 85 |
|
| 86 |
+
# Qwen chat
|
| 87 |
+
def chat_with_qwen(text, image=None):
|
| 88 |
if not model or not tokenizer:
|
| 89 |
+
return "Model not loaded."
|
|
|
|
| 90 |
try:
|
| 91 |
+
messages = [{"role": "user", "content": text}]
|
|
|
|
|
|
|
| 92 |
if image:
|
| 93 |
+
messages[0]["content"] = [{"image": image}, {"text": text}]
|
| 94 |
+
response, _ = model.chat(tokenizer, messages, history=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
return response
|
| 96 |
except Exception as e:
|
| 97 |
logger.error(f"Chat error: {e}")
|
| 98 |
+
return f"Chat error: {e}"
|
| 99 |
|
| 100 |
+
# Extract representative frames
|
| 101 |
def extract_video_frames(video_path, max_frames=2):
|
| 102 |
try:
|
| 103 |
cap = cv2.VideoCapture(video_path)
|
| 104 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 105 |
+
frame_indices = [int(i * total_frames / max_frames) for i in range(max_frames)]
|
| 106 |
frames = []
|
| 107 |
+
for idx in frame_indices:
|
| 108 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 109 |
+
success, frame = cap.read()
|
| 110 |
+
if success:
|
| 111 |
+
frames.append(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
cap.release()
|
| 113 |
return frames
|
| 114 |
except Exception as e:
|
| 115 |
+
logger.error(f"Frame extraction error: {e}")
|
| 116 |
return []
|
| 117 |
|
| 118 |
+
# Multimodal chat logic
|
| 119 |
def multimodal_chat(message, history, image=None, video=None, pdf=None):
|
| 120 |
global chunks, index
|
| 121 |
+
|
| 122 |
if not model:
|
| 123 |
+
return "Model not available."
|
| 124 |
|
| 125 |
try:
|
| 126 |
+
# PDF + question
|
| 127 |
+
if pdf and message:
|
| 128 |
+
pdf_path = pdf.name if hasattr(pdf, 'name') else None
|
| 129 |
+
if not pdf_path:
|
| 130 |
+
return "Invalid PDF input."
|
| 131 |
+
chunks = extract_chunks_from_pdf(pdf_path)
|
| 132 |
index = build_faiss_index(chunks)
|
| 133 |
if index:
|
| 134 |
context = rag_query(message, chunks, index)
|
| 135 |
+
user_prompt = f"Context:\n{context}\n\nQuestion: {message}"
|
| 136 |
+
return chat_with_qwen(user_prompt)
|
| 137 |
else:
|
| 138 |
+
return "Failed to process PDF."
|
|
|
|
| 139 |
|
| 140 |
+
# Image + question
|
| 141 |
+
if image and message:
|
| 142 |
+
return chat_with_qwen(message, image)
|
|
|
|
| 143 |
|
| 144 |
+
# Video + question
|
| 145 |
+
if video and message:
|
| 146 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 147 |
+
video_path = os.path.join(temp_dir, "video.mp4")
|
| 148 |
+
shutil.copy(video.name if hasattr(video, 'name') else video, video_path)
|
|
|
|
| 149 |
frames = extract_video_frames(video_path)
|
| 150 |
+
if not frames:
|
| 151 |
+
return "Could not extract video frames."
|
| 152 |
|
| 153 |
+
temp_img_path = os.path.join(temp_dir, "frame.jpg")
|
| 154 |
+
cv2.imwrite(temp_img_path, cv2.cvtColor(frames[0], cv2.COLOR_BGR2RGB))
|
| 155 |
+
return chat_with_qwen(message, temp_img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
# Text only
|
| 158 |
if message:
|
| 159 |
return chat_with_qwen(message)
|
| 160 |
|
| 161 |
+
return "Please enter a question and optionally upload a file."
|
| 162 |
except Exception as e:
|
| 163 |
+
logger.error(f"Chat error: {e}")
|
| 164 |
+
return f"Error: {e}"
|
| 165 |
|
| 166 |
+
# Gradio UI
|
| 167 |
with gr.Blocks(css="""
|
| 168 |
+
body { background-color: #f3f6fc; }
|
| 169 |
+
.gradio-container { font-family: 'Segoe UI', sans-serif; }
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
h1 {
|
| 171 |
+
background: linear-gradient(to right, #667eea, #764ba2);
|
| 172 |
+
color: white !important;
|
| 173 |
+
padding: 1rem; border-radius: 12px; margin-bottom: 0.5rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
}
|
| 175 |
.gr-box {
|
| 176 |
+
background-color: white; border-radius: 12px;
|
| 177 |
+
box-shadow: 0 0 10px rgba(0,0,0,0.05); padding: 16px;
|
|
|
|
|
|
|
| 178 |
}
|
| 179 |
+
footer { display: none !important; }
|
| 180 |
""") as demo:
|
| 181 |
+
|
| 182 |
+
gr.Markdown("""
|
| 183 |
+
<h1 style='text-align: center;'>Multimodal Chatbot powered by Qwen-2.5-Omni-3B</h1>
|
| 184 |
+
<p style='text-align: center;'>Ask your own questions with optional image, video, or PDF context.</p>
|
| 185 |
+
""")
|
| 186 |
|
| 187 |
chatbot = gr.Chatbot(show_label=False, height=450)
|
| 188 |
state = gr.State([])
|
| 189 |
|
| 190 |
with gr.Row():
|
| 191 |
+
txt = gr.Textbox(show_label=False, placeholder="Type your question...", scale=5)
|
| 192 |
send_btn = gr.Button("🚀 Send", scale=1)
|
| 193 |
|
| 194 |
with gr.Row():
|
|
|
|
| 198 |
|
| 199 |
def user_send(message, history, image, video, pdf):
|
| 200 |
if not message and not image and not video and not pdf:
|
| 201 |
+
return "", history, history
|
| 202 |
response = multimodal_chat(message, history, image, video, pdf)
|
| 203 |
history.append((message, response))
|
| 204 |
+
return "", history, history
|
| 205 |
|
| 206 |
+
send_btn.click(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot, state])
|
| 207 |
+
txt.submit(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot, state])
|
| 208 |
|
| 209 |
+
logger.info("Launching Gradio app")
|
| 210 |
+
demo.launch()
|
|
|